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The proof theory of apodictic syllogistic

Melissa Antonelli 1

University of Bologna
Department of Computer Science and Engineering

melissa.antonelli2@unibo.it

1 Introduction

This research aims at extending von Plato’s 2009/16 work by offering a (possi-
bly comprehensive) account of Aristotle’s deductive logic. 2 The method, which
led von Plato to a transparent reconstruction of assertoric syllogistic and to the
remarkable normal form theorem, is here applied to purely and mixed apodic-
tic logic. Following it, the original source is directly analyzed, without adding
anything to it. Indeed, although the success of syllogistic was such that many
of its original features were changed throughout its evolution, in An.Pr. I,
Aristotle had explicitly defined his logic and systematically introduced a com-
pletion proof for each imperfect mood. Our study simply consists in treating
syllogistic as a ND system and derivability proofs as tree-form derivations, with
great benefits both for text exegesis and for proof comprehension. Thanks to
this ‘translation’ of the source into tree form, not only plain assertoric, but
also controversial modal derivability proofs become perfectly intelligible. This
proof-theoretical approach (coherent with Analytica’s original goal) allows us
to define a clear and suited-to-study rule system and to show that all Aristotle’s
proofs are correct. Indeed, when considered as a deductive system, apodictic
syllogistic does not appear as a “realm of darkness” [12, p. 1] anymore.

2 The assertoric system SYL
Before presenting his syllogistic, Aristotle introduces the language (An.Pr.
24a16-20). Assertoric (atomic) propositions express the belonging of a term,
the predicate, to another term, the subject. They are characterized by quality,
affirmative or negative, and quantity, universal or particular: 3

Π+(S,P) | Π–(S,P) | Σ+(S,P) | Σ–(S,P)

1 I wish to thank G. Corsi, E. Orlandelli and J. von Plato for guiding me in the present
study and supporting it through the ERC Advanced Grant GODELIANA, led by him.
2 The idea of extending [16] to modal syllogistic was suggested to me by Jan von Plato.
3 We have used the compact and suggestive notation of [16]. Capital letters denote terms,
Π and Σ indicate the predication quantity, the index the quality. In natural language:

Every S is P | No S is P | Some S is P | Some S is not P



4 The proof theory of apodictic syllogistic

For Aristotle, a syllogism is a two-premisses, valid inference defined by its pair
of productive premisses. 4 Syllogisms are divided into three figures, based on
the relation between the middle term and the extremes, and may be either
perfect/complete or imperfect/incomplete (24b23-7). 5 The core of An.Pr. I
concerns the ‘reduction’ of all imperfect moods to the perfect ones. By sys-
tematically inspecting possible premisses combination in each figure, Aristotle
proves that either a given conclusion follows from them or that no one can. In
the latter case, the premisses are said not to “syllogize” (and a counter-example
is offered).

Following a tradition starting in the 1970s, we will treat assertoric syllogistic
as a ND system. 6 The innovative tree-form treatment comes from [16], by
which our system is inspired. SYL is obtained by simply ‘translating’ the
rules, linearly presented in the original source, into tree form: 7

Σ+(S,P)⊥
Σ+⊥

Π–(S,P)

Σ–(S,P)⊥
Σ–⊥

Π+(S,P)

Π–(S,P)
Π–⊥

Σ+(S,P)⊥
Π+(S,P)

Π+⊥
Σ–(S,P)⊥

Σ+(S,P)
Σ+C

Σ+(P,S)

Π–(S,P)
Π–C

Π–(P,S)

Π+(S,P)
Π+C

Σ+(P,S)

Π+(B,A) Π+(C,B)
Barbara

Π+(C,A)

Π–(B,A) Π+(C,B)
Celarent

Π–(C,A)

Π+(B,A) Σ+(C,B)
Darii

Σ+(C,A)

Π–(B,A) Σ+(C,B)
Ferio

Σ–(C,A)

P P⊥ ⊥I⊥

[P⊥]1

...
⊥

Raa, 1
P

In An.Pr. 1-6, Aristotle proves the derivability in SYL of four second-figure
syllogisms and of six third-figure ones. 8

4 As is well known, the meaning of the word “syllogism” is ambiguous, referring both to valid
inferences in general (so, including three-premisses, relational, or hypothetical syllogisms) and
to the specific An.Pr. system, on which we will focus here. See at least [2, pp. 23ff.] and
[14, pp. 30ff.]. Furthermore, a stricto sensu syllogism is defined by its pair of productive
premisses, and not by its premisses plus its conclusion, see [11].
5 For Aristotle, first-figure syllogisms are perfect, second- and third-figure ones are not.
6 In 1973, Corcoran, in [3], and Smiley, in [13], (independently) present a reconstruction
of assertoric syllogistic in ND form, inspiring other subsequent proposals, as [14], [7], and
[15]. The first tree-form reconstructions appear in [16] and [4] (actually, an early tree-form
perfection proof for Camestres can be found in [5, p. 76]).
7 Σ+/−-Π+/−⊥ are presented in De Int. 17a33-b19 (they are actually eight but only the
given four are used in perfection proofs), Π−C in An.Pr. 25a6-7, Π+ C in 25a7-8, Σ+C
in 25a9-10, first-figure moods in An.Pr. b37-40, 26a1-2, 26a23-5, 26a25-6, ⊥I in Metaph.
1005b19-20, 1005b25-20, 1011b13-4, Raa in An.Pr. 41a23-32.
8 Respectively, Cesare (27a5-8), Festino (27a32-7), Baroco (27a37-b2), Camestres
(27b2-4), and Darapti (28a22-6), Felapton (28a26-30), Disamis (28b8-11), Datisi (28b11-
3), Bocardo (28b17-20), Ferison (28b31-6). For space reasons, we had to omit their re-
constructed derivability proofs, which can be found in [1] or [16]. The reconstruction shows
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3 The apodictic systems AP1 and AP
Aristotle’s modal syllogistic is universally considered as controversial and a
variety of attempts for a consistent interpretation have appeared in the lit-
erature. 9 However, most of them focus on semantics, whereas we aim at
reconstructing deductive systems and proofs as they are effectively presented
in the source, without (at this stage) suggesting an interpretation. As for the
assertoric fragment in [16], the apodictic system is directly obtained from the
original text and perfecting proofs are straightforwardly reconstructed. This
transparently shows them to be well-constructed, as Aristotle always applies
his rules coherently.

Syllogistic propositions are characterized not only by quality and quan-
tity, but also by modality : assertoric, necessary and possible (25a1-2). The
apodictic language is obtained by endowing the assertoric one with apodictic
predication: S is necessarily P. 10

Π+[S, P ] | Π–[S, P ] | Σ+[S, P ] | Σ–[S, P ]

Aristotle takes into account all the five possible combinations of modal and
assertoric premisses. We will here analyze the purely- and mixed-apodictic
fragments only. The treatment of purely apodictic logic is extremely concise.
Apodictic conversions (25a26-36) and perfect syllogisms (29b35-30a3) are de-
fined analogously to the assertoric ones. Purely-apodictic AP1 is as follows:

Π–[S,P]
Π–[C]

Π–[P,S]

Π+[S,P]
Π+[C]

Σ+[P,S]

Σ+[S,P]
Σ+[C]

Σ+[P,S]

Π+[B,A] Π+[C,B]
B[a]rb[a]r[a]

Π+[C,A]

Π–[B,A] Π+[C,B]
C[e]l[a]r[e]nt

Π–[C,A]

Π+[B,A] Σ+[C,B]
D[a]r[i][i]

Σ+[C,A]

Π–[B,A] Σ+[C,B]
F[e]r[i][o]

Σ–[C,A]

Π+[A,B] Σ–[C,B]
B[a]r[o]c[o]

Σ–[C,A]

Σ–[B,A] Π+[B,C]
B[o]c[a]rd[o]

Σ–[C,A]

Differently from SYL, in AP1 B[a]r[o]c[o] and B[o]c[a]rd[o] are primi-

that Aristotle actually introduces two distinct, but equivalent (29b6-15), systems. The more
economical one does not include Σ+C, Darii and Ferio. Furthermore, no fourth figure exists
and the 14 valid syllogisms do not include the, subsequently introduced, subaltern ones, as
their premisses do not differ from those of the corresponding superaltern moods.
9 It is communis opinio that Aristotle’s modal syllogistic raises several problems. Neverthe-
less, many scholars have introduced formal model(s) offering reconstructions, usually partial
(one exception is [6]). The literature on the topic is vast – for an updated status quaes-
tionis, see [12, pp. 32-37] – but most of the works are focussed on giving a semantics for
modal syllogistic (sometimes departing from text evidence). We avoid this and only present
Aristotle’s words in a today more ‘digestible’ form. To the best of our knowledge, there is
no work presenting Aristotle’s modal syllogistic as a ND-system and its completion proofs
as tree-form derivations. The most resembling study seems to be McCall’s axiomatization
(likewise showing Aristotle’s consistent use of his inference rules, [8, p. 95]).
10Modalities are not logical operators but part of the structure of the atomic formulas to
which the four quantifiers are applied.



6 The proof theory of apodictic syllogistic

tive. 11 AP1 derivability proofs are obtained as the corresponding assertoric
(ostensive) ones. 12 There are four second- and six third-figure moods.

Mixed-apodictic syllogisms are such that one premiss is assertoric, the other
apodictic and from them something apodictic is concluded. AP is obtained by
adding to the rules of SYL and AP1 first-figure mixed syllogisms (30a18-b2):

Π+[B,A] Π+(C,B)
B[a]rbar[a]

Π+[C,A]

Π–[B,A] Π+(C,B)
C[e]lar[e]nt

Π–[C,A]

Π+[B,A] Σ+(C,B)
D[a]ri[i]

Σ+[C,A]

Π–[B,A] Σ+(C,B)
F[e]r[i]o

Σ–[C,A]

Aristotle shows that there are nine imperfect mixed-apodictic syllogisms: three
in the second figure and six in the third. Second-figure moods are C[e]sar[e]
(30b6-14), Cam[e]str[e]s (30b14-9) and F[e]stin[o] (31a1-11), which are
(respectively) shown derivable as follows: 13

Π–[B,A]
Π–[C]

Π–[A,B] Π+(C,A)
C[e]lar[e]nt

Π–[C,B]

For first let the privative be necessary and let it not be possible for A to belong to any B,
but let A merely belong to C. Then, since the privative converts, neither is it possible for
B to belong to any A. But A belongs to every C; consequently, it is not possible for B to
belong to any C, for C is below A. [An.Pr. 30b6-14]

Π–[C,A]
Π–[C]

Π–[A,C] Π+(B,A)
C[e]lar[e]nt

Π–[B,C]
Π–[C]

Π–[C,B]

Π–[B,A]
Π–[C]

Π–[A,B] Σ+(C,A)
F[e]ri[o]

Σ–[C,B]

There is no mixed syllogism corresponding to Baroco (31a11-16). Third-
figure D[a]rapt[i] (31a24-31), Dar[a]pt[i] (31a31-5), F[e]lapt[o]n (31a35-
8), D[a]tis[i] (31b12-7), Dis[a]m[i]s (31b17-20) and F[e]ris[o]n (31b33-6)
are shown derivable respectively as:

Π+[C,A]

Π+(C,B)
Π+C

Σ+(B,C)
D[a]ri[i]

Σ+[B,A]

Π+[C,B]

Π+(C,A)
Π+C

Σ+(A,C)
D[a]ri[i]

Σ+[A,B]
Σ+[C]

Σ+[B,A]

Π–[C,A]

Π+(C,B)
Π+C

Σ+(B,C)
F[e]ri[o]

Σ–[B,A]

Π+[C,B]

Σ+(C,A)
Σ+C

Σ+(A,C)
D[a]ri[i]

Σ+[A,B]

11Actually, the term variables of B[a]r[o]c[o] and B[o]c[a]rd[o] are respectively that of
second- (N-M-X) and third-figure moods (S-P-R).
12For the derivations, see [1, pp. 83-88].
13For space reasons, we compare our reconstruction with An.Pr. text for C[e]sar[e]’s proof
only, but for each derivation the corresponding source reference is quoted to make easily
possible to check that these (correct) derivability proofs are genuinely Aristotelian.
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Π+[C,B]

Σ+(C,A)
Σ+C

Σ+(A,C)
D[a]ri[i]

Σ+[A,B]
Σ+[C]

Σ+[B,A]

Π–[C,A]

Σ+(C,B)
Σ+C

Σ+(B,C)
F[e]ri[o]

Σ–[B,A]

To conclude, Aristotle proves the derivability in AP of 14 assertoric, 14
purely-apodictic, and 13 mixed-apodictic moods and each of his perfection
proofs is correct. In the future, we aim at extending this analysis to the whole
Aristotelian syllogistic and at presenting a unique and suited-to-study system
for all modalities. Furthermore, this proof system(s) may both be used as a
tool to help reconstruct Aristotle’s semantics and be developed, independently
from its historical origin, in the context of Natural Logic. 14
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Belief based on inconsistent information
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Abstract

A recent line of research has developed around logics of belief based on evidence [1,4].
One approach is based on [4] and understands belief as based on information con-
firmed by a reliable source. We present the work introduced in [3] where we propose a
finer analysis how belief can be based on information, where the confirmation comes
from multiple possibly conflicting sources and is of a probabilistic nature. We use
Belnap-Dunn logic and non-standard probabilities, to account for potentially contra-
dictory information on which belief is grounded. We combine it with an extension of
 Lukasiewicz logic, or a bilattice logic, within a two-layer modal logical framework to
account for belief.

Keywords: epistemic logics, non-standard probabilities, Belnap-Dunn logic,
two-layer modal logic.

There are several proposals of logical frameworks in the literature allowing
for non-trivial inconsistencies. Belnap-Dunn logic BD [2], also referred as First
Degree Entailment was specically designed to deal with possibly incomplete
and inconsistent information. One of the underlying ideas of this logic is that
not only amount of truth, but also amount of information that each of the
values carries matters. This idea was generalized by introducing the notion of
bilattices [11,9], which are algebraic structures that contain two partial orders
simultaneously: a truth order, and a knowledge (or an information) order.

Belnap-Dunn four-valued logic BD, in the propositional language built using
connectives {∧,∨,¬}, evaluates formulas to Belnap-Dunn square – the (de
Morgan) lattice 4 built over an extended set of truth values {t, f, b, n} (Figure
1, middle). Following Dunn’s approach [7], we adopt a double valuation model
M = 〈W,+,−〉, giving the positive and negative support of formulas in
the states, which can be seen as locally evaluating formulas in the product
bilattice 2� 2 (Figure 1 left), and thus in 4 (Figure 1, middle). BD logic has a
simple axiomatization which is known to be (strongly) complete w.r.t. double
valuation frame semantics. BD is also known to be locally finite. 2

1 The research of Marta B́ılková was supported by the grant GA17-04630S of the Czech
Science Foundation. The research of Sabine Frittella and Sajad Nazari was funded by the
grant ANR JCJC 2019, project PRELAP (ANR-19-CE48-0006). The research of Ondrej
Majer was supported by the grant GA16-15621S.
2 It means there are only finitely many (up to inter-derivability) formulas in a fixed finite
set of propositional variables. It affects the completeness of the logic in Example 0.1.



2 Belief based on inconsistent information

(0, 1)

(0, 0) (1, 1)

(1, 0)

f

n b

t

(0, 0)

(1, 0)

(0, 1)

(1, 1)

Fig. 1. The product bilattice 2�2 (left), which is isomorphic to Dunn-Belnap square 4
(middle), and its continuous probabilistic extension (right). Negation flips the values
along the horizontal line.

The idea of independence of positive and negative information naturally ge-
neralizes to probabilistic extensions of BD logic. A probabilistic Belnap-Dunn
(BD) model [10] is a double valuation BD model extended with a classical
probability measure on the power set of states P (W ) generated by a mass
function on the set of states W . 3 The non-standard (positive and negative)
probabilities of a formula are defined as (classical) measures of its positive
and negative extensions: p+(ϕ) :=

∑
s+ϕ m(s), p−(ϕ) :=

∑
s−ϕ m(s).

Non-standard probabilities satisfy 0 ≤ p(ϕ) ≤ 1, are monotone (resp. p−(ϕ) is
antitone) w.r.t. `BD, and p(ϕ∧ψ)+p(ϕ∨ψ) = p(ϕ)+p(ψ) [10, Lemma 1]. These
axioms are weaker than classical Kolmogorovian ones and p+(¬ϕ) 6= 1− p+(ϕ)
in general which allows for a non-trivial treatment of inconsistent information.
We can diagrammatically represent non-standard probabilities on a continuous
extension of Belnap-Dunn square (Figure 1, right), which we can see as a pro-
duct bilattice L[0,1] � L[0,1]. For example, the point (0, 0) corresponds to no
information being available, while (1, 1) is the point of maximally conflicting
information. The vertical dashed line corresponds to the “classical” case when
positive and negative support sum up to 1.

We look at an agent who considers a set of issues represented by atomic
variables, has access to sources providing information based on non-standard
probabilities and builds beliefs based on these sources using some aggregation
strategy. In many scenarios we can adapt aggregation strategies that have
been introduced on classical probabilities: imagine for example a company
that has access to a huge amount of heterogeneous data from various sources
and uses software capable of analyzing these data. In this case it makes sense
to consider aggregation methods that require some computational power. A
natural strategy here is to evaluate sources with respect to their reliability and
aggregate them by taking their weighted average. Another kind of agent is an
investigator of a criminal case who builds her opinion on the guilt of a suspect
based on different pieces of evidence. We first assume that all the sources are
equally reliable and the investigator is very cautious and does not want to
draw conclusions hastily. Hence, she relies on statements as little as all her

3 The probability of a set X ⊆W is defined as the sum of masses of its elements.
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sources agree on them. The aggregation she uses returns the minimum of the
positive and the minimum of the negative probabilities provided by the sources
(min-min). If on the other hand the investigator considers all the sources being
perfectly reliable, she accepts every piece of evidence and builds her belief using
the max-max aggregation.

To make a clear distinction between the level of information on which the
agent bases her beliefs, and the level of reasoning about her beliefs, we use
a two-layer logical framework. The formalism originated with Hájek [8], and
was further developed in [5] into an abstract framework with a general theory
of syntax, semantics and completeness. Syntax (Le,Lu,M) of a two layer
logic L consists of a lower language Le, an upper language Lu, and a set of
modalities M which, applied to a non-modal formula of Le, form a modal
atomic formula of Lu. Semantics of a two layer logic L is based on frames of
the form F = (W,E,U, 〈µ♥〉♥∈M), where E is a local algebra of evaluation of
Le in the states, U is an upper-level algebra, and for each modality its semantics
is given by the map µ♥ :

∏
s∈W E → U 4 . The resulting logic as an axiomatic

system L = (Le,M,Lu) consists of an axiomatics of Le, modal axioms and
rules M , and an axiomatics of Lu.

Example 0.1 [Logic of probabilistic belief ] In some scenarios it is reaso-
nable to represent agents (partial) beliefs as non-standard probabilities. In
this two-layer logic, the bottom layer is that of events or facts, represented by
BD-information states. A source provides probabilistic information given as a
mass function on the states. The modality is that of non-standard probabilistic
belief, the top layer – the logic of thus formed beliefs – is based on the following
extension of  Lukasiewicz logic  L [6].

We consider the product of the standard algebra of  Lukasiewicz logic
[0, 1] L = ([0, 1],∧,∨,& L,→ L) with [0, 1]op L = ([0, 1]op,∨,∧,⊕ L,	 L), which
arises turning the standard algebra upside down: it is an MV algebra
[0, 1] L × [0, 1]op L = ([0, 1] × [0, 1]op,∧,∨,&,→), where (1, 0) is the designated
value. Its logic is  Lukasiewicz logic  L. We extend the signature of the algebra
with the bilattice negation ¬(a1, a2) = (a2, a1), and extend the language to
{→,∼,¬}. We obtain the following axioms and rules, denoting the resulting
consequence relation ` L(¬):

α→ (β → α) ¬¬α↔ α

(α→ β)→ ((β → γ)→ (α→ γ)) ¬∼α↔ ∼¬α
((α→ β)→ β)→ ((β → α)→ α) (∼¬α→ ∼¬β)↔ ∼¬(α→ β)

(∼β → ∼α)→ (α→ β) α, α→ β/β α/∼¬α
We can provide a reduction of ` L(¬) to provability in  L and show that the
extension of  L by ¬ is conservative. Using finite completeness of  L, we can
prove that  L(¬) is finitely strongly complete w.r.t. [0, 1] L × [0, 1]op L .

4 For this paper, we always consider the lower algebras be all the same. But different algebras
can be later used when modelling heterogeneous information. We write algebras, but often
we use matrices, i.e. algebras with a set of designated values.



4 Belief based on inconsistent information

The two-layer syntax consists of Le = {∧,∨,¬} language of BD,M = {B}
a belief modality, and Lu = {→,∼,¬} language of  L(¬). The intended
frames are F = (W,4, [0, 1] L × [0, 1]op L , µ

B), 5 where µB is computed as fol-
lows. A source is given by a mass function on the states m : W → [0, 1].
Given e ∈ ∏

v∈W 4, µB computes the following sums of weights over states:
µB(e) = (

∑
ev∈{t,b}m(v),

∑
ev∈{f,b}m(v)). Thus, for a non-modal formula

ϕ ∈ Le, applying µB to the tuple of its values in the states, we obtain the
value of Bϕ in [0, 1] L × [0, 1]op L as a pair of its non-standard positive and nega-
tive probabilities (

∑
v+ϕm(v),

∑
v−ϕm(v)) = (p+(ϕ), p−(ϕ)). 6

The modal part M consists of axioms and a rule reflecting the axioms of
non-standard probabilities:

B(ϕ ∨ ψ)↔ (Bϕ	B(ϕ ∧ ψ))⊕Bψ B¬ϕ↔ ¬Bϕ
ϕ `BD ψ/ ` L(¬) Bϕ→ Bψ

The resulting logic is (BD,M,  L(¬)). As BD is locally finite and strongly com-
plete w.r.t. 4, and  L(¬) is finitely strongly complete w.r.t. [0, 1] L × [0, 1]op L , we
can by [5, Theorems 1 and 2] conclude that (BD,M,  L(¬)) is finitely strongly
complete w.r.t. 4 based, [0, 1] L × [0, 1]op L -measured frames validating M . In
such frames, µB interprets B as a non-standard probability. From [10, The-
orem 4], we know that it is the induced non-standard probability function of
exactly one mass function on the BD states, which in fact yields complete-
ness w.r.t. the intended frames described above. Since the (weighted) average
aggregation of non-standard probabilities yields a non-standard probability,
(BD,M,  L(¬)) is also adequate to capture frames with multiple sources such
that µB : P (

∏
s∈W 4) → [0, 1] L × [0, 1]op L computes the (weighted) average of

the probabilities given by the individual sources.
Alternatively, we can take Lu = {∧,∨,u,t,⊂,¬, 0} as the language of

the product residuated bilattice [0, 1] L � [0, 1] L = ([0, 1] × [0, 1],∧,∨,u,t,⊃
,¬, (0, 0)), defined in the spirit of [9] (considered as a matrix with F = {(1, a) |
a ∈ [0, 1]} being the designated values). With a little work, we can define ⊕,	
and use literally the same modal axioms M as above.

Example 0.2 [Logic of monotone coherent belief ] The intended frames
are F = (W,4,L[0,1] � L[0,1], µ

B) where L[0,1] � L[0,1] is the bilattice on Figu-
re 1 (right), we have multiple sources and µB : P (

∏
s∈W 4) → L[0,1] � L[0,1]

computes the min-min (max-max) aggregation of the probabilities given by the
individual sources. In general this does not yield a non-standard probability,
only the interdefinability of positive and negative support via negation is pre-
served. This motivates considering logic (BD,M,BD), where the modal part
M consists of the axiom and rule

B¬ϕ a`BDu ¬Bϕ ϕ `BDe ψ/Bϕ `BDu Bψ.

5 Formulas of Le are evaluated locally in the states of W using 4, as in the frame semantics
for BD.
6 The value of ϕ in v being among {t, b} means it is positively supported in v, i.e. v + ϕ.
Similarly for negative support.
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As BD is strongly complete w.r.t. both 4 and L[0,1] � L[0,1],
7 we obtain that

(BD,M,BD) is strongly complete w.r.t. 4-based L[0,1]�L[0,1]-measured frames
validating M . 8

Further directions. A natural aggregation strategy to consider would be
Dempster–Shafer combination rule [12] (which is problematic in cases of high
conflict, because it can provide counter intuitive results) adapted to the BD-
based setting. As a source does not often give an opinion about each formula
of the language, we need to account for sources providing partial probability
maps. Another quest is to capture dynamics of information and belief given by
updates on the level of sources, and to generalize the framework to the multi
agent setting, involving group modalities and dynamics of belief. Specifically,
forming group belief, including common and distributed belief, will involve
communication and/or sharing and pooling of sources. It might also call for
a use of modalities inside the upper logic to account for reflected beliefs, in
contrast to the beliefs grounded directly in the sources.
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Abstract

Multiple arguments that Propositional Dynamic Logic has Craig Interpolation have
been published, but one has been revoked and the status of the others is unclear.
Here we summarise a proof attempt originally written by the first author in German
in 1988. We also make available the original text and an English translation.
The proof uses a tableau system with annotations. Interpolants are defined for par-
titioned nodes, going from leaves to the root with appropriate definitions for each
rule. To prevent infinite branches generated by the ∗ operator, additional marking
rules are used. In particular, nodes are also defined as end nodes when they have a
predecessor with the same set of formulas along a branch with the same marking.
We end with open questions about the proof idea and connections to more recent
related work on non-wellfounded proof systems.

Keywords: Propositional Dynamic Logic, Craig Interpolation, Tableau.

1 Introduction

Propositional Dynamic Logic (PDL) from [4] is a well-known modal logic which
is both expressive and well-behaved. PDL can express common programming
constructs such as conditionals and loops, but also has a small model property.

A logic has Craig Interpolation (CI) iff for any validity φ→ ψ there exists
a formula θ in the vocabulary that is used both in φ and in ψ such that φ→ θ
and θ → ψ are valid. The formula θ is then called an interpolant.

For PDL the vocabulary includes atomic propositions and atomic programs.
For example, [(A ∪B)

∗
](p ∧ q) → [(B;B)

∗
](q ∨ r) is valid in PDL and [B∗]q

is an interpolant for this validity. But whether such interpolants always exist,
i.e. whether PDL has CI, has been studied for more than four decades and is
still unknown. The key challenge is how to systematically find interpolants for

1 Corresponding author: malvin@w4eg.eu
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validities involving the star operator a∗ which denotes arbitrary finite iteration
of a program a. There have been at least the following three proof attempts:

• Daniel Leivant in [10] from 1981. This article presents a sequent calculus
including a rule for ∗ with infinitely many premises. This rule is then
replaced with a finitary rule and an intuitionistic variant of the system
is defined. Interpolation is then shown in the intuitionistic system using
Maeharas Method, defining interpolants for each node in a proof [12, p. 33].
Interpolants for ∗ are defined via fixed points of matrices of programs.

In [9] it is said that it was not “possible to verify the argument” and
claimed that the finitary rule is problematic. But the rule can be validated
using the finite model property of PDL, as argued in [5]. Still, other parts
of the argument, e.g. the translation to the intuitionistic system, seem
problematic. As far as we know, the status of this argument is currently
unknown [6].

• Manfred Borzechowski in [2] from 1988. The idea here is similar to [10],
but using a tableau system instead of a sequent calculus. This text is also
criticised in [9], but without any specific argument.

• Tomasz Kowalski in [7] from 2002. This algebraic proof was officially
retracted [8] in 2004, after a flaw was pointed out by Yde Venema.

The correctness of the first two texts is still the subject of discussions. In this
note we summarise the proof attempt from [2]. This diploma thesis was written
under the supervision of Wolfgang Rautenberg at FU Berlin, but not published.
Together with this summary we make available the original German text and
an English translation at https://malv.in/2020/borzechowski-pdl. Page
numbers refer to the German text, but are also shown in the translation.

We use the following notation: p, q, etc. are atomic propositional variables,
P,Q, etc. are formulas from P ::= p | ¬P | P∧Q | [a]P . Moreover, A,B, etc. are
atomic programs and a, b, etc. are programs from a ::= A | a; a | a∪a | a∗ | P?.
We do not repeat the semantics for PDL here — see the original page 6 or [4].

Section 2 provides an overview of the tableau system, Section 3 describes
the main idea how to define interpolants, and Section 4 lists open questions.

2 Tableaux for PDL

The system is defined below. We read rules top-down and use “. . . | . . . ” for
branches. The Boolean rules and those for PDL constructs besides ∗ are stan-
dard. The critical rule (At) for atomic programs uses XA := {P | [A]P ∈ X}
which corresponds to a transition to another state in a Kripke model.

To deal with the ∗ operator and to prevent infinitely long branches, the
system uses the following two non-standard features and extra condition 6.

Nodes with n-formulas. The (¬n) rule is essentially a diamond rule for the
∗ operator. It also replaces ∗ by the string ‘(n)’. Formulas with ‘(n)’ are n-
formulas, in contrast to normal formulas. An n-formula becomes normal again
by extra condition 1, which applies iff an atomic modality is reached.
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Markings. Formulas can be marked with other formulas as upper indices,
using the loading rule (M+). Nodes with marked formulas are called loaded, in
contrast to free. Markings can be removed or changed by (M−), (¬n) or (¬?).

Definition 2.1 A PDL tableau is a finite tree generated according to the fol-
lowing rules and in addition adhering to the seven extra conditions below.
The classical rules:

X;¬¬P
(¬)

X;P

X;P ∧Q
(∧)

X;P ;Q

X;¬(P ∧Q)
(¬∧)

X;¬P | X;¬Q
The local rules:

X;¬[a ∪ b]P
(¬∪)

X;¬[a]P | X;¬[b]P

X;¬[Q?]P
(¬?)

X;Q;¬P
X;¬[a; b]P

(¬; )
X;¬[a][b]P

X; [a ∪ b]P
(∪)

X; [a]P ; [b]P

X; [Q?]P
(?)

x;¬Q | X;P

X; [a; b]P
(; )

X; [a][b]P

X;¬[a∗]P
(¬n)

X;¬P | X;¬[a][a(n)]P

X; [a∗]P
(n)

X;P ; [a][a(n)]P

The PDL rules:

X;¬[a0] . . . [an]P
(M+) X free

X;¬[a0] . . . [an]PP
the loading rule,

X;¬[a]PR
(M−)

X;¬[a]P
the liberation rule,

X;¬[A]PR
(At)

XA;¬PR\P
the critical rule.

The marked rules (where . . .R\P indicates that R is removed iff R = P ):

X;¬[a ∪ b]PR
(¬∪)

X;¬[a]PR | X;¬[b]PR
X;¬[a; b]PR

(¬; )
X;¬[a][b]PR

X;¬[a∗]PR
(¬n)

X;¬PR\P | X;¬[a][a(n)]PR
X;¬[Q?]PR

(¬?)
X;Q;¬PR\P

1. Instead of a node X;¬[A]P or X; [A]P with an n-formula P we always
obtain the node X;¬[A]f(P ) or X; [A]f(P ), respectively, where f(P ) is
obtained by replacing (n) with ∗.

2. Instead of a node X; [a(n)]P we always obtain the node X.

3. A rule must be applied to an n-formula whenever it is possible.

4. No rule may be applied to a ¬[a(n)]-node.

5. To a node obtained using (M+) we may not apply (M−).

6. If a normal node t has a predecessor s with the same formulas and the
path s. . . t uses (At) and is loaded if s is loaded, then s is an end node.

7. Every loaded node that is not an end note by condition 6 has a successor.
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Claim 2.2 The system from Definition 2.1 is sound and complete for PDL.

The full completeness proof is contained in sections 1.8 to 1.10 of the original
text. The main idea is to construct a Kripke model from an open tableau.

3 Interpolation via Tableaux

We claim that the tableau system can be used to show interpolation. We first
define interpolants for partitioned sets of formulas. A partitioned set X is a
disjoint union of two subsets X1, X2. We write it as X = X1/X2.

Definition 3.1 A formula θ is an interpolant for a partitioned set X1/X2 iff
θ is in the vocabulary of that is used in both X1 and X2 and the two sets
X1 ∪ {¬θ} and {θ} ∪X2 are both inconsistent.

Corollary 3.2 A formula θ is an interpolant for a validity φ → ψ iff θ is an
interpolant for the partitioned set X1/X2 given by X1 = {φ} and X2 = {¬ψ}.

To find an interpolant for a validity φ → ψ we start a tableau with φ/¬ψ
as its root. This tableau is built as usual from the root to the leaves, applying
the rules to partitioned sets. Then we go in the opposite direction: starting
at the leaves, we define an interpolant for each node. Depending on the rule
which was applied, we use the interpolant(s) of the child node(s) to define a
new interpolant for the parent node. In addition, the interpolant might depend
on whether the active formula in a rule application is in the left or right side
of the partition. As mentioned above, this is similar to Maehara’s Method for
sequent calculi [12, p. 33]. We discuss two rules as examples here.

Interpolating (¬∪). Suppose we use (¬∪) in the right set. Given two inter-
polants θa and θb for X1/X2;¬[a]P and X1/X2;¬[b]P respectively, we define
the new interpolant θ := θa∧θb for the parent node X1/X2;¬[a∪b]P . Similarly,
on the left side we would use θ := θa ∨ θb for X1;¬[a ∪ b]P/X2.

Interpolating (At). Suppose we use (At) in the left set to go from a parent
node ¬[A]φ;Y1/Y2 to a child node ¬φ; (Y1)A/(Y2)A. Suppose θA is an inter-
polant for the child node. Then ¬φ; (Y1)A;¬θA and (Y2)A; θA are inconsistent.
We now want an interpolant for the parent, i.e. a θ such that ¬[A]φ;Y1;¬θ
and Y2; θ are inconsistent. A solution is to set θ := 〈A〉θA, unless Y2 is empty,
in which case we are not allowed to use A, so we ignore θA and let θ := ⊥.
Similarly, if (At) is applied in the right set we use θ := [A]θA, unless Z1 is
empty, in which case we let θ := >.

We refer to the original text for two examples. A closed tableau for the set
{¬[(A ∪ p?)

∗
]q, [A∗]q} is given on page 29 and an interpolant for [(A;A)

∗
](p ∧

[A; (B ∪ C)]0)→ [A∗](p ∨ [C]q) is computed in Section 2.4: [A∗](p ∨ [C]0).

4 Open Questions

The previous two sections provide only a high-level overview of the argument.
To verify it completely we will further study the following two main questions:

• How exactly are the existence lemma and completeness of the system
shown? In particular, what is the role of first free normal successor nodes?



Borzechowski and Gattinger 17

• How are interpolants defined for end nodes due to condition 6? The orig-
inal text uses the extra tableaux T I and T J for this, what is their role?

If the proof can be verified, there are of course further questions:

• Can we simplify the proof to only consider test-free PDL?

• How does the system compare to recent work on infinitary and non-
wellfounded systems, such as [1] for µ-calculus and [3] for PDL?

• Can interpolation be efficiently implemented into an automated prover?
We have started to implement parts of the given system, similar to how
the star-free fragment of [10] was implemented by [11].

To conclude, we hope that this summary will help to further scrutinise the
proof and encourage the interested participant of AiML 2020 to contact us.
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Abstract

This paper answers a problem left open in Fitting’s [2] by showing that the quantifier-
free calculus FOIL extended with axiom B: A→ 23A is characterized by symmetric
models with constant domains. The problem in brief: how can we have constant
domains without the Barcan Formula?
First, it is shown that, thanks to axiom B, an inductive set of rules CD(k), for
k ∈ N, is derivable. Then, it is shown that this set of rules enables a constant domain
Lindenbaum-Henkin construction, thus proving the completeness of FOIL.B.

Keywords: FOIL, symmetry, axiomatic system, completeness, canonical model.

1 Introduction

FOIL is a family of two-sorted first-order modal logics containing both object
and intensional variables where the abstraction operator λ is used to talk about
the object (if any) denoted by an intension in a given world.

In [2] an axiomatization of FOIL based on the quantifier-free language is
introduced by M. Fitting and “is shown to be complete for standard logics
without a symmetry condition” [2, p. 1]. “It would be interesting to know if
a complete axiomatisation of FOIL can be given [...] using [...] propositional
modal logics involving a symmetric accessibility relation.”[2, p. 21].

We show, Lemma 3.3, that, thanks to axiom B, an inductive set of rules
CD(k), for k ∈ N is derivable and that these rules allow a constant domain
Lindenbaum-Henkin construction. The completeness of FOIL.B follows.

As to the semantics, we slightly generalize Fitting’s semantics by adding a
set of labels, one for each intension, to the effect that any two intensions are
different even if they map the same worlds to the same objects. This has no
effect on truth and solves the problem noted in [3], see Remark 4.8.

2 Syntax and Semantics of FOIL

Syntax. We consider a signature containing, for each n,m ∈ N, a count-
able set of n + m-ary relational symbols, denoted by Pn,m, Rn,m. . . The lan-

1 Eugenio Orlandelli is supported by the Academy of Finland, research project no. 1308664.
Thanks are due to three anonymous reviewers.



Corsi and Orlandelli 19

guage contains a denumerable set of object variables OBJ (x, y, z,) and one
of intensional variables INT (f, g, h). The logical symbols are ⊥,→ 2, λ,=.
L-formulas are generated by:

A ::= Pn,m(x1, . . . , xn, f1, . . . , fm) |x = y | ⊥ |A→ A |2A | 〈λx.A〉f (L)

The symbols >,¬,∧,∨,↔,3 and 6= are defined as usual, and the formula:

Df abbreviates 〈λx.>〉f and expresses ‘f designates’. (Def. D)

By A[y/x] we denote the formula that is obtained by substituting each free
occurrence of x in A with an occurrence of y, provided that y is free for x in
A. The formula A[g/f ] is defined analogously.

Semantics. A model is a tuple M = 〈W,R,DO, DL, DI , V 〉 where:
(i) 〈W,R〉 is a symmetric frame;
(ii) DO is a non-empty set of objects;
(iii) DL is a non-empty set of labels `f̂ , `ĝ . . . ;

(iv) DI is a set of intensions such that, for each `f̂ ∈ DL, DI contains a

partial functions f̂ : W −→ DO ×DL; where, if f̂ is defined for w ∈ W , then
f̂(w) = 〈o, `f̂ 〉, for some o ∈ DO, if f̂ is not defined for w ∈W , then f̂(w) = `f̂ ;

(v) V is a valuation function such that V (Pn,m, w) ⊆ (DO)n × (DI)
m and

V (=, w) = {〈o, o〉 : o ∈ DO}.
An assignment is a function σ mapping individual variables to member of

DO and each intensional variables to members of DI . σ
x.o (σf.i) behave like

σ except for x (f) that is mapped to o ∈ Dw (f̂ ∈ DI , respectively).

Satisfaction of a formula A in a world w of a modelM under an assignment
σ, to be denoted by σ |=Mw A (σ |=w A, for short), is defined standardly for
atoms and for x = y,⊥, B → C,2B, and it is thus defined for 〈λx.A〉f :

σ |=w 〈λx.A〉f iff σ(f)(w) is defined and σx.σ(f)(w) |=w A

If σ(f)(w) is not defined, then σ 6|=w 〈λx.A〉f ; σ |=w Df iff σ(f)(w) is defined.

A formula A is true in a world w, |=Mw A, iff for all σ, σ |=Mw A; A is true in a
model, |=M A, iff for all w, |=Mw A; A is valid, |= A, iff for all M, |=M A.

3 Axiomatic system

Definition 3.1 FOIL.B is defined by the following axioms and rules [2]:

(i) All propositional tautologies

(ii) 2(A→ B)→ (2A→ 2B)

(iii) 〈λx.A→ B〉f → (〈λx.A〉f → 〈λx.B〉f)

(iv) 〈λx.A〉f → A,x not free in A

(v) 〈λx.A〉f → 〈λy.A[y/x]〉f ,
y free for x in A

(vi) Df → (〈λx.A〉f ∨ 〈λx.¬A〉f)

(vii) x = x

(viii) x = y → (P [x/z]→ P [y/z]),
P atomic formula;

(ix) x = y → 2(x = y)

(x) x 6= y → 2(x 6= y)

(xi) Df → 〈λy.〈λx.x = y〉f〉f
(B) A→ 23A
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A A→ B
B

MP
A
2A

N
A→ B

〈λx.A〉f → 〈λx.B〉f λ-reg

Lemma 3.2 ([2, Proposition 4.1]) Let FOIL be FOIL.B minus axiom (B),

(i) `FOIL Df → (¬〈λx.A〉f ↔ 〈λx.¬A〉f)

(ii) `FOIL 〈λx.A〉f ↔ (Df ∧A) provided x not free in A

(iii) `FOIL (〈λy.x = y〉f ∧ 〈λy.z = y〉f)→ (x = z)

Lemma 3.3 The inductive set of rules CD(k), k ∈ N, is derivable in FOIL.B.

A0 → 2(A1 → · · · → 2(Ak ∧ Df → 〈λx.x 6= y〉f) . . . )

A0 → 2(A1 → · · · → 2(Ak → ¬Df) . . . )
CD(k), k ∈ N, y not free in Ai

Proof. We first prove that the rule CD(0) is derivable in FOIL.

(a) A0 ∧ Df → 〈λx.x 6= y〉f Assumption
(b) 〈λy.A0〉f → [〈λy, x.>〉f.f → 〈λy, x.x 6= y〉f.f ] Ax. (i), Def. D, λ-reg
(c) A0 ∧ Df → [Df ∧ 〈λx.>〉f → 〈λy, x.x 6= y〉f.f ] Lemma 3.2(ii)
(d) A0 ∧ Df → [Df ∧ Df → 〈λy, x.x 6= y〉f.f ] Def. D
(e) A0 → [Df → 〈λy, x.x 6= y〉f.f ] Axiom (i)
(f) A0 → [Df → ¬〈λy, x.x = y〉f.f ] Lemma 3.2(i)
(g) A0 → [Df → 〈λy, x.x = y〉f.f ] Axiom (xi)
(h) A0 → ¬Df From (f) and (g)

As is well known, the following rules are derivable from axiom B:
3A→ B
A→ 2B

DRB
A→ 2B
3A→ B

DRB′
.

CD(2) is derivable by the help of these rules:

(a) A0 → 2(A1 → 2(A2 ∧ Df → 〈λx.x 6= y〉f)) Assumption
(b) (3A0 ∧A1) → 2(A2 ∧ Df → 〈λx.x 6= y〉f) DRB′+ axiom (i)
(c) 3(3A0 ∧A1) ∧A2 → (Df → 〈λx.x 6= y〉f) DRB′+ axiom (i)
(d) 3(3A0 ∧A1) ∧A2) → ¬Df CD(0)
(e) (3A0 ∧A1) → 2(A2 → ¬Df) Axiom (i)+DRB
(j) A0 → 2(A1 → 2(A2 → ¬Df)) Axiom (i)+DRB

Analogously CD(k) is derivable for all k ∈ N.
2

4 Completeness

We prove strong completeness by the usual Henkin-style technique, cf. [1]. Let
P be a denumerable set of fresh object variables (to be called parameters) and
let LP be the language obtained by adding the set P to L and by imposing
that parameters cannot be bound by λ. We use L (LP ) to the logic FOIL.B over
the language L (LP , respectively), and ∆ for a set of L(P )-formulas.

Definition 4.1 • ∆ is LP -consistent iff ∆ 6`LP ⊥.

• ∆ is LP -complete iff for all A ∈ LP , either A ∈ ∆ or ¬A ∈ ∆.

• ∆ is 3k-P -rich iff if A0 ∧3(A1 ∧ · · · ∧3(Ak ∧ Df) . . . ) ∈ ∆ then
A0∧3(A1∧· · ·∧3(Ak∧Df∧〈λx(x = p)〉f) . . . ) ∈ ∆ for some p ∈ P∪OBJ .

• ∆ is 2k-P -inductive iff A0 → 2(A1 → · · · → 2(Ak ∧ Df → 〈λx.x 6= p〉f))
∈ ∆ for all p ∈ P ∪OBJ only if A0 → 2(A1 → · · · → 2(Ak → ¬Df) . . . ) ∈ ∆.
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• ∆ is LP -saturated iff it is LP -consistent, LP -complete, and 3k-P -rich (∀k ∈ N).

Lemma 4.2 If ∆ is LP -saturated, then it is 2k-P -inductive for all k ∈ N.

Lemma 4.3 (Lindenbaum-Henkin) If ∆ is an L-consistent set of formu-
las of L, then there is an LP -saturated set ∆?, for some denumerable set of
parameters P , such that ∆? ⊇ ∆.

Lemma 4.4 (Diamond-lemma for L) If w is an LP -saturated set of formu-
las and 3A ∈ w then there is a set v of LP -formulas such that:

(i) v is LP -saturated;

(ii) A ∈ v;

(iii) v ⊇ 2−(w), where 2−(w) = {A : 2A ∈ w};
(iv) for each a ∈ P ∪OBJ , [a]w = [a]v, where [a]w = {b : a = b ∈ w};
Proof. Let B0, B1, B2, . . . Bn, Bn+1 . . . be an enumeration of all LP -formulas.

• ∆0 = 2−(w) ∪ {A};
• Given ∆n and Bn, we define ∆n+1:

(i) If ∆n ∪ {Bn} is not LP -consistent, let ∆n+1 = ∆n ∪ {¬Bn};
(ii) If ∆n ∪ {Bn} is LP -consistent, we distinguish two cases:
(a) If Bn ≡ A0 ∧3(A1 ∧ · · · ∧3(Ak ∧ Df) . . . ) for some A0, . . . , Ak, let

∆n+1 = ∆n ∪ {A0 ∧ 3(A1 ∧ · · · ∧ 3(Ak ∧ Df ∧ 〈λx.x = p〉f) . . . )}
for some p ∈ P ∪OBJ such that the resulting set is LP -consistent;

(b) Else, ∆n+1 = ∆n ∪ {Bn}.
Lemma 4.5 Each element of the chain ∆0,∆1, . . . ,∆n, . . . is LP -consistent.

Proof. ∆0 is LP -consistent by modal reasoning. Assume, by induction hy-
pothesis, that ∆n is LP -consistent. We consider only case (ii)(a).

Suppose by reductio that there is no p ∈ P ∪OBJ such that the set
∆n ∪ {A0 ∧ 3(A1 ∧ · · · ∧ 3(Ak ∧ Df ∧ 〈λx.x = p〉f)} is LP -consistent. Then,
for all p ∈ P , ∆n `LP (A0 ∧3(A1 ∧ · · · ∧3(Ak ∧Df ∧ 〈λx.x = p〉f))→ ⊥. By
modal reasoning ∆n `LP (A0 → 2(A1 → · · · → 2(Ak ∧ Df → ¬〈λx.x = p〉f)).
By Lemma 3.2(i), ∆n `LP (A0 → 2(A1 → · · · → 2(Ak ∧ Df → 〈λx.x 6= p〉f)).

Moreover, ∆n is just 2−(w) ∪ {C1, . . . Cm} for some finite set of formulas
{C1, . . . Cm}, therefore, where C ≡ C1 ∧ · · · ∧ Cm,
2−(w) `LP C ∧A0 → 2(A1 → · · · → 2(Ak ∧ Df → 〈λx.x 6= p〉f)) for all p ∈
P∪OBJ . Thus w `LP 2(C ∧A0 → 2(A1 → · · · → 2(Ak ∧ Df → 〈λx.x 6= p〉f))
for all p ∈ P ∪OBJ , and, for all p ∈ P ∪OBJ ,
w `LP > → 2(C ∧A0 → 2(A1 → · · · → 2(Ak ∧ Df → 〈λx.x 6= p〉f))).
Since w is LP -saturated, by lemma 4.2, w is 2j-P -inductive for all j ∈ N,
hence, in particular w is 2k+1-P -inductive, therefore
w `LP > → 2(C ∧A0 → 2(A1 → · · · → 2(Ak → ¬Df))).
It follows that w `LP 2(C ∧A0 → 2(A1 → · · · → 2(Ak → ¬Df))),
(C ∧A0 → 2(A1 → · · · → 2(Ak → ¬Df))) ∈ 2−(w)
∆n `LP A0 → 2(A1 → · · · → 2(Ak → ¬Df)),
But this contradicts the LP -consistency of ∆n ∪ {Bn}. 2
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Let v =
⋃
n∈N ∆n. The set v is LP -consistent and satisfies all the properties of

the lemma. 2

Definition 4.6 Let us consider the frame 〈GL, R〉 where:
• GL is the class of all LP -saturated sets of formulas of LP for some denumerable
set of parameters P ; • wRv iff 2−(w) ⊆ v.

This frame is likely to be composed of a number of parts, each completely
isolated from any of the others. Following [4, p. 78], a cohesive frame is one in
which, for every w,w′ ∈W L, w(R ∪R−1)nw′ for some n ≥ 0.

Definition 4.7 [Normal canonical model] A normal canonical model for L is
a tuple ML = 〈W L, R,DO, DL, DI , V 〉, where:

• 〈W L, R〉 is any of the cohesive frames of which 〈GL, R〉 is composed;

• DO = {[a]w : for some w ∈W L, where a ∈ OBJ ∪ P};
• DL = {`f̂ : f ∈ INT};
• DI = {f̂ : `f̂ ∈ DL }, where, for all w ∈ W L, if Df ∈ w, then, for some

[p] ∈ DO such that 〈λy(y = p〉f ∈ w}, f̂(w) = 〈[p], `f̂ 〉; else f̂(w) = `f̂ .

• the valuation V is a function with domain W L that is such that:

V (Pn,m, w) = {〈[a1]w, ..., [an]w, f̂1, . . . , f̂m〉 : Pa1, ..., an, f1, . . . , fm ∈ w}.
V (=2,0, w) = {〈[a], [a]〉 : where a ∈ OBJ ∪ P }.

Remark 4.8 DO is well defined because the frame 〈W L, R〉 is cohesive and so
for every w, v ∈ W L, [a]w = [a]v, in fact {b : (a = b) ∈ w} = {b : (a = b) ∈ v}
thanks to axioms (ix) and (x). So we can write [a] instead of [a]w.

DI is well defined because if Df ∈ w there is at least a p ∈ P ∪ OBJ such
that 〈λy.y = p〉f ∈ w since w is 30-P -rich, moreover such a [p] is unique, in
fact, by Lemma 3.2(iii), `L [〈λy.p = y〉f ∧ 〈λy.p′ = y〉f ]→ (p = p′).

Moreover, we avoid the problem noted in [3] of mapping two distinct inten-
sional variables satisfying different formulas to the same intension: if f 6≡ g,
then `f 6= `g and, therefore, f and g will be assigned to different intensions
even if (〈λx.x = p〉f ∈ w) iff (〈lx.x = p〉g ∈ w), for all w ∈W L .

Lemma 4.9 (Truth lemma) LetML be a normal canonical model for L and

let σ be the canonical assignment such that σ(a) = [a] and σ(f) = f̂ . For all

w ∈W L and for all formula A of LP , σ |=ML

w A iff A ∈ w .

Theorem 4.10 Any FOIL.B-consistent set of formulas is satisfied (under the
can. ass.) in some world of a symmetric canonical model with constant domain.
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Abstract

We outline benefits of formalizing a proof system for hybrid logic in the proof assistant
Isabelle/HOL, showcase how the process of formalization can shape our proofs, and
describe our current work on formalizing completeness of a more restrictive system.
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1 Introduction

Basic hybrid logic extends ordinary modal logic with nominals, a special sort
of propositional symbol true at exactly one world, and satisfaction statements,
@iφ, which are true if and only if the formula φ is true in the world named by
nominal i. The well-formed formulas of the basic hybrid logic are defined as
follows, where x is a propositional symbol and we use i, j, k, a, b for nominals:

φ, ψ ::= x | i | ¬φ | φ ∨ ψ | 3φ | @iφ

The language is interpreted on Kripke models M, consisting of a frame
(W,R) and a valuation of propositional symbols V . Here W is a non-empty set
of worlds and R is a binary accessibility relation between them. To interpret
nominals we use an assignment g mapping them to elements of W ; if g(i) = w
we say that nominal i denotes w. Formula satisfiability is defined as follows:

M, g, w |= x iff w ∈ V (x)
M, g, w |= i iff g(i) = w
M, g, w |= ¬φ iff M, g, w 6|= φ
M, g, w |= φ ∨ ψ iff M, g, w |= φ or M, g, w |= ψ
M, g, w |= 3φ iff for some w′, wRw′ and M, g, w′ |= φ
M, g, w |= @iφ iff M, g, g(i) |= φ

We have just presented basic hybrid logic using (semi-formal) natu-
ral language, but we could have presented it using a proof assistant like
Isabelle/HOL [7] instead. This forces us to be more precise: we would have to
define hybrid logic in the proof assistant’s logic (here, higher-order logic). But
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we can then do our metatheory in higher-order logic and machine check its cor-
rectness. This leaves no room for ambiguity or mistakes since every statement
compiles to the primitives of the proof assistant (that we trust to be correct).
Of course, we will have to supply more proof detail which can result in more
verbose proofs; nonetheless, used skillfully, formalization can help guide our
exploration of metatheory, and suggest new ideas, as we hope to show.

Hybrid logic has received little such treatment. Doczkal and Smolka for-
malize hybrid logic with nominals but no satisfaction operators in constructive
type theory using the proof assistant Coq. They give algorithmic proofs of
small model theorems and computational decidability of satisfiability, validity,
and equivalence of formulas [3]. In Isabelle/HOL, Linker formalizes the seman-
tic embedding of a spatio-temporal multi-modal logic that includes a hybrid
logic-inspired at-operator but has no proof system [6]. The present work is the
first sound and complete formalized proof system for hybrid logic that we know
of. We have briefly described an earlier version of the formalization in a short
paper for an automated reasoning audience [4], but that paper did not cover
the notion of “potential” for restricting the GoTo rule.

2 Seligman-Style Tableau System

The proof system must handle the fact that a hybrid logic formula is true
relative to a given world. Figures 1a and 1b depict two strategies for this.

...

@iφ1

@iφ2

...

@jψ1

...

(a) Internalized.

...

i
φ1

φ2

...

j
ψ1

...

(b) Seligman-style.

0. a
1. ¬(¬@iφ ∨ @iφ) [0]
2. ¬¬@iφ (¬∨) 1 [1]
3. ¬@iφ (¬∨) 1 [2]
4. @iφ (¬¬) 2 [3]

5. i GoTo [2]
6. ¬φ (¬@) 3 [3]
7. φ (@) 4 [4]

×
(c) Seligman-style tableau example.

Fig. 1. Tableau styles. (c) displays potential in the fourth column.

Internalized tableau systems work exclusively with satisfaction statements
while the Seligman-style tableau system handles arbitrary formulas, giving a
more local proof style, by dividing branches into blocks of formulas that are all
true at the same world. Each pair of blocks is separated by a horizontal line
and every block starts with a nominal dubbed the opening nominal, denoting
that world. We call a block with opening nominal i an “i-block.”

Figure 2 gives the tableau rules. Every rule has input formulas above the
vertical line(s) and output below. The output of GoTo is a new block with
corresponding opening nominal, while the other rules extend the last, so-called
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“current” block. When a rule has multiple input formulas we write them next
to each other. Above each input formula, we write the opening nominal of the
block it occurs on. Similarly, the opening nominal of the current block is the
first thing below the horizontal line. Any formula on the current block may be
used as input under the same restrictions on opening nominals. The system
resembles (and simplifies) the one developed by Blackburn et al. [1], notably
by having single-input (@) and (¬@) rules and assuming that all blocks have
an opening nominal causing us to omit a rule.

Figure 1c gives an example tableau for the formula ¬@iφ ∨ @iφ which is
negated and placed on a block with an arbitrary opening nominal. Note how
the GoTo rule switches perspective to the world denoted by i while consuming
a unit of potential in the fourth column.

a
φ ∨ ψ
a

/ \
φ ψ

a
¬(φ ∨ ψ)

a
|
¬φ
¬ψ

a
¬¬φ
a
|
φ

a
3φ

a
|
3i

@iφ

a a
¬3φ 3i

a
|

¬@iφ

(∨) (¬∨) (¬¬) (3)1 (¬3)

b b a
i φ i

a
|
φ

|
i

i i
φ ¬φ
a
|
×

b
@aφ

a
|
φ

b
¬@aφ

a
|
¬φ

Nom GoTo2 Closing (@) (¬@)

1 i is fresh, φ is not a nominal.
2 i is not fresh.

Fig. 2. Tableau rules

We formalize this proof system as an inductive predicate, `, in Isabelle
by specifying for which branches ` holds. For example, the closing condition
becomes the following code that allows you to close any branch where, for some
p and i, both p and ¬p occur on i-blocks (“at i”) in the branch:

Close: 〈p at i in branch =⇒ (¬ p) at i in branch =⇒ n ` branch〉

Here, n is the “potential” from Figure 1c. After defining all cases we can
type in a closing tableau and have the computer check that every rule is applied
according to our definition: we get a proof checker for free. Moreover, we can
machine verify proofs of soundness and completeness.
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3 Rule Induction

When we define the proof system, Isabelle provides a principle for proving
statements by induction on the construction of a closing tableau. We consider
a special case of the principle here, which is used to show lemmas of the form
“if the branch Θ closes then so does f(Θ)” where f is some transformation of
the branch. Examples of transformations could be to rename nominals or to
omit redundant occurrences of formulas.

The induction principle then instructs us, for each rule, to assume that the
branch extended by that rule’s output has a closing tableau when transformed
and show that a closing tableau exists without the extension, typically by ap-
plying the rule in question. For instance, in the (¬¬) case we assume, first, the
premise of the rule, that ¬¬φ occurs on an a-block in Θ where a is the opening
nominal of the current block. Second: we assume as induction hypothesis that
the transformation of Θ extended by φ has a closing tableau. To prove the case
we need to show that the transformation of just Θ has a closing tableau.

This induction principle is our motivation for rephrasing the following re-
striction on the proof system by Blackburn et al. [1]:

Original R4 The GoTo rule cannot be applied twice in a row.

Current R4 The GoTo rule consumes one potential. The remaining rules add
one potential and we are allowed to start from any amount of potential.

1. a
2. ¬¬φ

...

3. a GoTo
4. φ (¬¬) 2

5. i GoTo

(a) Starting point.

1. a
2. ¬¬φ
3. φ

...

4. a GoTo
5. φ (¬¬) 2

6. i GoTo

(b) Transformed. 5 and 6 are now illegal.

Fig. 3. Unjustified GoTo after weakening on line 3. We assume restriction R1 [1],
that extensions must be new.

The original restriction rules out infinite branches that consist of repeated
applications of GoTo. Potential does the same because it decreases with each
application. This new formulation, however, works better with the induction
principle outlined above, since that principle may force us to apply GoTo twice
in a row. Consider Figure 3b where the transformation of the branch means
we should not apply GoTo on line 4 as in the tableau we are mimicking but go
directly to line 6. With the original R4 we would need a more intricate trans-
formation of the branch (or a weaker lemma), but with the current restriction
we can simply assume that we start with more potential, making the detour
benign. The restriction preserves completeness as any closed tableau is finite.
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Also, we can always start from a single unit:

Theorem 3.1 (Potential) If a branch can be closed then it can be closed
starting from a single unit of potential. (cf. “No detours” in the formalization.)

4 Current Work

We have lifted equivalents of the four relevant restrictions by Blackburn et al. [1]
(R1, R2 and R5) in previous work [4]. Unfortunately, the Nom rule as given
can still be used to construct infinite branches [1]. Blackburn et al. replace it
with a three-part Nom* rule without this problem and show that it is sufficient
for their translation-based completeness proof [1]. Instead of splitting it, we
may impose the following, equivalent restriction on the general Nom rule:

Nom* i = a and φ is not k or 3k for any k introduced by the (3) rule.

This restriction means that “(3)-produced” nominals can only appear on
their own as opening nominals. This breaks a symmetry otherwise present in
exhausted branches: if nominal i appears on a k-block then k also appears on
an i-block. The synthetic completeness proof by Jørgensen et al. [5] that we
have previously formalized [4] makes use of this symmetry in their modeling of
open exhausted branches and their model existence result. We have overcome
this by (a) updating the definition of Hintikka sets to model our non-symmetric
branches and (b) applying the model existence result by Bolander and Black-
burn for a terminating internalized calculus [2] to our synthetic setting.

5 Conclusion

Modern proof assistants are more than capable of handling non-trivial proof
systems and their metatheory. It can still be beneficial to shape our proofs
such that they work well with the tools provided by the assistant, but in return
we gain precision and absolute trust in the correctness of our results.
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Abstract

This paper addresses a gap in the literature concerning the precise complexity of the
satisfiability problem for the one-variable fragment of first-order linear temporal logic
(FOLTL) with arbitrary counting quantifiers FOLTL#fin over expanding domain mod-
els. By exploiting explicit bounds on Dickson’s Lemma, we obtain an Ackermannian
upper-bound on the size of satisfying models for FOLTL#fin over expanding domains,
yielding an optimal Ackermann-time decision procedure.

Keywords: first-order temporal logic, counting quantifiers, Dickson’s Lemma,
Ackermann-complete.

1 Preliminaries

1.1 First-order temporal logics with counting quantifiers

In what follows, we shall consider the one-variable fragment of the first-order
linear temporal language comprising a countably infinite set of (monadic) pred-
icate symbols Pred = {P0, P1, . . . } and sole first-order variable x. We denote

by QT L#
1 the set of all FOLTL formulas with counting quantifiers defined by

the following grammar:

ϕ ::= Pi(x) | ¬ϕ | (ϕ1 ∧ ϕ2) | Fϕ | Xϕ | ∃≤cxϕ

where Pi ∈ Pred and c ∈ N specifies the capacity of the quantifier ∃≤c. Other
Boolean connectives can be defined in the usual way, together with temporal
operator Gϕ := ¬F¬ϕ, and quantifiers ∃xϕ := ¬∃≤0xϕ and ∀xϕ := ¬∃x¬ϕ.

Formulas of QT L#
1 are interpreted in first-order Kripke models of the form

M = 〈T, D, d, I〉, where T is an initial segment of the natural number under
their usual ordering, D is a non-empty set of domain objects and d is a domain
function which associates each instance k ∈ T with a non-empty subset d(k) ⊆
D. Finally, I : α × Pred → 2D is a function associating each k ∈ T and each
predicate symbol Pi ∈ Pred with a subset I(k, Pi) ⊆ d(k).
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We say that a model is expanding in the case that d(n) ⊆ d(m), when-
ever n < m, respectively. Satisfiability is defined in the usual way, with
M, k |=a Xϕ iff M, (k + 1) |=a ϕ and M, ` |=a Fϕ iff M, ` |=a ϕ, for
some ` > k. Counting quantifiers are interpreted so that M, k |=a ∃≤cxϕ
iff
∣∣{b ∈ dom (k) : M, k |=b ϕ}

∣∣ ≤ c.
In what follows, we are concerned with the following decision problem:

FOLTL#fin-sat:

Input: Given a formula ϕ ∈ QT L#
1 ,

Question: Is there a first-order expanding model M = 〈T, D, d, I〉 such that
T is finite and M, 0 |=a ϕ for some a ∈ d(0)?

If we were to consider satisfiability with respect to constant domain mod-
els then the satisfiability problem is known to be non-recursively enumerable,
even if we were to restrict the language to the X-free fragment with sole quan-
tifiers {∃≤0,∃≤1} [6].

In what follows, the size of ϕ ∈ QT L#
1 , denoted ‖ϕ‖, is taken to be the

number of symbols it comprises with the capacity of counting quantifiers en-
coded in binary, so that cap(ϕ) < log2(‖ϕ‖) and |sub(ϕ)| < ‖ϕ‖, where cap(ϕ)
denotes the maximum capacity appearing in ϕ and sub(ϕ) denotes the set of
subformulas of ϕ.

1.2 The fast-growing hierarchy

For each countable ordinal α ∈ Ord we define the function Fα : N → N by
taking

F0(n) := n+ 1, Fα+1(n) := Fnα (n), and Fλ(n) := Fλ(n)(n) (†)
if λ ∈ Ord is a countable limit ordinal, where λ(n) is a fundamental sequence
for λ (see [9] for details). For our purposes, it is enough to note that we obtain
a version of Ackermann’s function Fω(n) = Fn(n) by a diagonalization of the
sequence F0, F1, F2, . . . [1]. For each countable ordinal α ∈ Ord, we define the
complexity class Fα to be the set of all decision problems that can be solved
by a (deterministic) Turing Machine in time bounded by some fast-growing
function Fα of some function p(n) ∈ O(Fβ(n)) for β < α, where n is the size
of the input.

2 Result

Definition 2.1 Let Types(ϕ) ⊆ 2sub(ϕ) denote the set all Boolean saturated
set of subformulas of ϕ. We define a quasistate for ϕ to be a pair (T, µ) such
that:

(qs1) T ⊆ Types(ϕ) is a non-empty set of types for ϕ,

(qs2) µ : T → {1, . . . , cap(ϕ), cap(ϕ) + 1} is a ‘multiplicity’ function,

(qs3) (∃≤c-saturation) For all t ∈ T and (∃≤cx ξ) ∈ sub(ϕ), we have that
(∃≤cx ξ) ∈ t iff

∑{µ(t′) : ξ ∈ t′ and t′ ∈ T} ≤ c.
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Definition 2.2 A quasimodel for ϕ is a tuple Q = 〈N, q , I,R〉 such that:

(qm1) N ∈ N, q is a function associating each k < N with a quasistate
q(k) = (Tk, µk), and R is an set of partial functions (called runs) ri,
indexed with indices from I, such that ri(k) ∈ Tk for each k ∈ dom (ri),
where dom (ri) denotes the domain over which ri is defined.

(qm2) There is some i ∈ I such that ϕ ∈ ri(0),

(qm3) (expanding) For all i ∈ I, if k ∈ dom (ri) and k < k′ then k′ ∈ dom (ri).

(qm4) (X-coherence) For all i ∈ I, k ∈ dom (ri) and X ξ ∈ sub(ϕ),

X ξ ∈ ri(k) ⇐⇒ ξ ∈ ri(k + 1),

(qm5) (F-coherence) For all i ∈ I, k ∈ dom (ri) and F ξ ∈ sub(ϕ),

F ξ ∈ ri(k) ⇐⇒ ξ ∈ ri(k′) for some k′ > k,

(qm6) For all k ∈W and t ∈ Tk, we have µk(t) = min
(
|I(k, t)| , cap(ϕ) + 1

)
,

where I(k, t) = {i ∈ I : k ∈ dom (ri) and ri(k) = t} denotes the set of indices
of runs passing through type t ∈ Tk of quasistate q(k).

For each k < N , we define the signature of q(k) to be the Nd-vector:

σ(k) = 〈|I(k, t)| : t ∈ Types(ϕ)〉 ∈ Nd

of dimension d = |Types(ϕ)| < 2‖ϕ‖. We say that Q is controlled if it satisfied
the additional condition that:

(ctrl) ‖σ(k)‖∞ ≤ 4(‖ϕ‖+k), for all k < N , where ‖x‖∞ = maxdi=1 xi denotes
the ∞-norm of x = 〈x1, . . . , xd〉 ∈ Nd,

and that Q is small if it satisfies the additional condition that:

(sml) N < F(d+2)(‖ϕ‖), where F(d+2) is as defined in (†).

Lemma 2.3 ϕ is FOLTL#fin-satisfiable iff there is a quasimodel for ϕ.

Proof. The proof is routine and follows similar constructions in [8,5]. 2

Lemma 2.4 If ϕ has a quasimodel then ϕ has a controlled quasimodel.

Proof. Suppose that Q = 〈N, q , I,R〉 is a quasimodel for ϕ. For each k <
N , t ∈ Tk and m < µk(t), we fix an index i(k,t,m) ∈ I such that (i) k ∈
dom

(
ri(k,t,m)

)
and ri(k,t,m)

(k) = t, and (ii) If m 6= m′ then i(k,t,m) 6= i(k,t,m′).
Let I ′ be the set of all such indices, and define a new run r′i for each

i = i(k,t,m) ∈ I ′ by taking ` ∈ dom (r′i) iff ` ≥ k and r′i(`) = ri(`), for all ` ≥ k;
that is to say that we trim the domains of the runs. Let R′ be the set of all such
runs indexed by I ′. Note that, since µk(t) ≤ (cap(ϕ) + 1) ≤ 2‖ϕ‖ and |Tk| ≤
2‖ϕ‖, we have that

∑
t∈Types(ϕ) |I ′(0, t)| ≤ 4‖ϕ‖ and

∑
t∈Types(ϕ) |I ′(k + 1, t)| ≤

4‖ϕ‖ +
∑
t∈Types(ϕ) |I ′(k, t)|, from which we deduce that

‖σ(k)‖∞ ≤
∑

t∈Types(ϕ)

|I ′(k, t)| ≤ (k + 1) · 4‖ϕ‖ ≤ 4(‖ϕ‖+k).
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for all k < N , since (k + 1) ≤ 4k. It is a routine exercise to show that Q′ =
〈N, q , I ′,R′〉 is a controlled quasimodel for ϕ, as required. Note, also, that if Q
is small then so too is Q′, since the size of the timeline remains unchanged. 2

Lemma 2.5 If ϕ has a quasimodel then ϕ has a small quasimodel.

Proof. Suppose to the contrary that ϕ is satisfiable but does not have a small
quasimodel. Let Q = 〈N, q , I,R〉 be the smallest quasimodel for ϕ, which we
may assume does not to satisfy (sml), and so N > F(d+2)(‖ϕ‖). Moreover,
without loss of generality, we may assume that Q is a controlled quasimodel
for ϕ, courtesy of Lemma 2.4. Consider the sequence of signatures

Σ =
〈
σ(k) ∈ Nd : k < α

〉

where d < 2‖ϕ‖. Note that, by (ctrl), we have that ‖σ(k)‖∞ ≤ 4(‖ϕ‖+k) and
so the sequence is (4n, ‖ϕ‖)-controlled in the sense of [3], where it is proved the
the maximum length of any such ‘bad’ sequence for which Dickson’s Lemma 1

does not apply is at most F(d+2)(‖ϕ‖). However, since N > F(d+2)(‖ϕ‖), it
then follows that there must be some n < m < N such that σ(n) ≤ σ(m),
which is to say that |I(n, t)| ≤ |I(m, t)|, for all t ∈ Types(ϕ).

It follows that there is some family of injections ηt : I(n, t) → I(m, t), for
t ∈ Tn, from which we can construct an injection η : A → I where A = {i ∈
I : n ∈ dom (ri)} ⊆ I. Let B = I − rng(η) denote all those indices that do not
appear in the range of η. Now let I ′ = {(i, a) : i ∈ A} ∪ {(i, b) : i ∈ B} be the
disjoint union of A and B.

We define a new quasimodel Q = 〈N ′, q ′, I ′,R′〉 by making an excision of
the sub-interval [n,m) and stitching together the runs bridging the cut, similar
to the approach taken in [7]. To this end, let λ : ω → ω is a relabelling such that
λ(k) = k, for k < n, and λ(k) = k+m− n, for k ≥ n. Take N ′ = (N −m+ n)
and q ′(k) = q(λ(k)), for all k < N ′. For each (i, x) ∈ I ′, let r′(i,x) be a new
run obtained by ‘stitching’ together runs indexed by i ∈ A with those indexed
by η(B) ∈ I across the excision, by taking

r′(i,x)(k) =





ri(k) if x = a and k < n

rη(i)(λ(k)) if x = a and k ≥ n
ri(λ(k)) if x = b and k ≥ n
undefined if x = b and k < n.

Take R′ to the set set of all such runs indexed by I ′. It is then straightforward
to check that Q′ is a quasimodel for ϕ. Moreover, Q′ is smaller than Q, contrary
to the supposition that Q be the smallest such quasimodel. Hence, there must
be some quasimodel satisfying (sml). 2

1 Dickson’s Lemma states for every infinite sequence
〈
xi ∈ Nd : i < ω

〉
there are i < j such

that xi ≤ xj . A ‘bad’ sequence is any finite sequence without this property.
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Theorem 2.6 FOLTL#fin has the Fω-bounded finite model property.

Proof. By alternating between application of Lemmas 2.4 and 2.5 we have
that ϕ is satisfiable if and only if it has a quasimodel that is both small and
controlled. Lemma 2.3, then yields a model for ϕ whose size is bounded by
O(F(d+2)(‖ϕ‖)) < O(Fω(‖ϕ‖)), as required. 2

Corollary 2.7 The satisfiability problem for FOLTL#fin is Fω-complete.

Proof. It is sufficient to non-deterministically search for a satisfying model for
ϕ ∈ QT L#

1 of the prescribed size. However, since the class Fω is closed under
exponentiation—and hence non-determinism—we have that the satisfiability
problem for FOLTL#fin belongs to Fω. The matching lower-bound is proved in [6],
via a reduction from the reachability problem for lossy counter machines [10].2

3 Discussion

In [6], it was proved via reduction that the X-free fragment with sole quantifiers
{∃≤0,∃≤1} is decidable. However, this proof did not yield a effective upper-
bound, as the decision procedure for the logic to which it is reduced depends
upon Kruskal’s Tree Theorem [4]. Indeed, in that same paper, the authors
show that the logic in question is Fωω -hard, owing to a reduction from the
reachability problem for lossy channel systems [2], making it strictly more

complex than FOLTL#fin, as demonstrated here. Note also that the choice of
binary/unary encoding for the counting quantifiers does not have an effect on
the complexity, with the limiting factor being the number of types for ϕ.
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Abstract

We consider product of modal logics in topological semantics and prove that the
topological product of S4.1 and S4 is the fusion of logics S4.1 and S4.
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axiom S4.1, S4

1 Introduction

The products of Kripke frames and there ware defined and studied by many
authors (cf. [6,9,5]). It is a natural way to combine modal logics and to study
the logics of two-dimensional structures. The same idea was used to define
the product of topological spaces in [15]. Note in [15] that product of two
topological spaces differ from the classical definition in topology. The main
difference being that the result of the product from [15] is a set with two
topologies: horizontal and vertical; and the classical product is a space with
one topology called the product topology.

One of the main questions in this context is the following: given two com-
plete modal logics L1 and L2, what is the logic of all possible products of
corresponding structures (Kripke frames or topological spaces) with one being
an L1-structure and the second being an L2-structure. It turns out that the
result heavily depends on the type of structures. For example, the Kripke-
frame-product S4 times S4 is the following logic (cf. [6])

S4 ∗ S4 + 2122p↔ 2221p+♦122p→ 22♦1p.(
¯
cf)

where S4 ∗ S4 is the fusion of corresponding logics.
The topological product (precise definition is given in the next section) of

S4 times S4 is just the fusion S4 ∗ S4 with no additional axioms (see [15])).
The notion of the product of topological spaces was generalized to the prod-

uct of neighborhood frames in [11] and [7].
In this paper, we prove that the topological product S4.1×t S4 = S4.1 ∗ S4.
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2 Definitions and background

Let us establish the playground. Assume we have a countably infinite set of
propositional letters PROP. A (modal) formula is defined recursively by using
the Backus-Naur form as follows:

A ::= p | ⊥ | (A→ A) | 2iA,

where p ∈ PROP, and 2i is a modal operator (i = 1, . . . , N). Other connectives
are introduced as abbreviations: classical connectives are expressed through ⊥
and →, and 3i is a shortcut for ¬2i¬.

Definition 2.1 A normal modal logic (or a logic, for short) is a set of modal

formulas closed under Substitution
(
A(p)
A(B)

)
, Modus Ponens

(
A,A→B

B

)
and Gen-

eralization rules
(

A
2iA

)
, containing all the classical tautologies and the normal-

ity axioms:
2i(p→ q)→ (2ip→ 2iq).

KN denotes the minimal normal modal logic with n modalities and K = K1.

Let L be a logic and Γ be a set of formulas, then L+ Γ denotes the minimal
logic containing L and Γ. If Γ = {A}, then we write L+A rather than L+{A}.

Logic S4 is well known:

S4 = K + 2p→ p+ 2p→ 22p.

The notion of Kripke frames and truth conditions (the |= relation) for them
are well known. We refer the reader to [4]. The same goes for the topological
spaces and topological models (see [1]).

For a class of topological spaces (Kripke frames) C the logic of it is

Log(C) = {A | ∀S ∈ C(S |= A)}

Note that if C is a class of birelational Kripke frames or bitopological spaces
the logic you get will have two modalities.

Definition 2.2 Let X1 = (X1, T1) and X2 = (X2, T2) be two topological
spaces. We define the (bitopological) product of them as the bitopological space
X1 ×t X2 = (X1 × X2, T

h
1 , T

v
2 ). Topology Th1 is the topology with the base{

U ×{x2}
∣∣U ∈ T1 & x2 ∈ X2

}
and topology T v2 is the topology with the base{

{x1} × U
∣∣x1 ∈ X1 & U ∈ T2

}
.

Topological product of two topologically complete modal logics L1 and L2

is the following logic with two modalities:

L1×t L2 = Log({X1 ×t X2 |X1,X2 — topological spaces, X1 |= L1,X2 |= L2 })
Theorem 2.3 ([15]) The topological product of S4 × S4 is the fusion of S4
with S4. In symbols:

S4×t S4 = S4 ∗ S4.
Even more, the logic of product Q×t Q is also S4 ∗ S4.
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Ph. Kremer proved a surprising negative result that the logic of R×t R is
not S4 ∗ S4 (see [?]). This logic is still unknown.

There are also some results on the product of neighborhood frames closely
related to the bitopological product (see [7,8,?,?]).

There were no completeness results of bitopological products for extensions
of S4. In this paper we consider a well-known extension of S4 with formula
A1 = 2♦p → ♦2p. This formula is called the McKinsey axiom and it is
well-studied both in the Kripke semantics and in topological semantics.

In the Kripke semantics this formula corresponds to the following property
in the presence of S4: for an S4-frame F = (W,R)

F |= A1 ⇐⇒ ∀w ∈W∃u ∈W (wRu ∧R(u) = {u}),

where R(u) = {t |uRt}. The proof is straightforward.
Let us recall some definitions from topology.

Definition 2.4 In topological space X point x is isolated if set {x} is open in
X. X is weakly scattered if the set of isolated points of X is dense in X, that is
if any open subset has an isolated point.

In topological semantics logic S4.1 was studied in [15,3,2]. It is known that
S4.1 is the modal logic of the class of weakly scattered spaces. The proof can
be found in [3].

3 Main result and further work

Theorem 3.1 S4.1×t S4 = S4.1 ∗ S4.
For the further work we plan to investigate the following topics:

(i) Determine the logics S4.1×tS4.1, S4.2×tS4, S4.2×tS4.1 and S4.2×tS4.2.
Hopefully, they will be equal to the fusions of the corresponding logics.

(ii) Add McKinsey axiom to transitive logics less then S4
like D4 and K4. From [?] and [7] we know that
D4 ×t D4 = D4 ∗ D4 and K4 ×t K4 = K4 ∗ K4 + ∆, where ∆ is the
set of variable-free formulas of spatial form. We hope it will be possible
to prove that adding axioms A1 and A2 will not add more axioms to the
right-hand part of the equalities.

References

[1] Benthem, J., G. Bezhanishvili, B. Cate and D. Sarenac, Multimodal logics of products of
topologies, Studia Logica 84 (2006), pp. 369–392.

[2] Bezhanishvili, G., D. Gabelaia and J. Lucero-Bryan, Modal logics of metric spaces, The
Review of Symbolic Logic 8 (2015), pp. 178–191.

[3] Bezhanishvili, G. and J. Harding, Modal logics of stone spaces, Order 29 (2012), pp. 271–
292.

[4] Blackburn, P., M. de Rijke and Y. Venema, “Modal Logic,” Cambridge University Press,
2002.



36 Topological product of modal logics S4.1 and S4

[5] Gabbay, D., A. Kurucz and F. Wolter, “Many-dimensional modal logics : theory and
applications,” Studies in logic and the foundations of mathematics 148, Elsevier, 2003.

[6] Gabbay, D. and V. Shehtman, Products of modal logics. Part I, Journal of the IGPL 6
(1998), pp. 73–146.

[7] Kudinov, A., Modal logic of some products of neighborhood frames (2012), pp. 386–394.
[8] Kudinov, A., Neighbourhood frame product KxK., Advances in Modal Logic 10 (2014),

pp. 373–386.
[9] Kurucz, A., Combining modal logics, Handbook of modal logic 3 (2007), pp. 869–924.

[10] Montague, R., Universal grammar, Theoria 36 (1970), pp. 373–398.
[11] Sano, K., Axiomatizing hybrid products of monotone neighborhood frames, Electr. Notes

Theor. Comput. Sci. 273 (2011), pp. 51–67.
[12] Scott, D., Advice on modal logic, in: Philosophical Problems in Logic: Some Recent

Developments, D. Reidel, 1970 pp. 143–173.
[13] Segerberg, K., Two-dimensional modal logic, Journal of Philosophical Logic 2 (1973),

pp. 77–96.
[14] Shehtman, V., Two-dimensional modal logic, Mathematical Notices of USSR Academy

of Science 23 (1978), pp. 417–424, (Translated from Russian).
[15] van Benthem, J. and G. Bezhanishvili, Modal logics of space, in: Handbook of spatial

logics, Springer, 2007 pp. 217–298.



A Sketch of a Proof-Theoretic Semantics for
Necessity

Nils Kürbis

University of  Lódź
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This paper considers proof-theoretic semantics for necessity within Dummett’s and
Prawitz’s framework. Inspired by a system of Pfenning’s and Davies’s, the language
of intuitionist logic is extended by a higher order operator which captures a notion
of validity. A notion of relative necessary is defined in terms of it, which expresses a
necessary connection between the assumptions and the conclusion of a deduction.
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1 Proof-Theoretic Semantics

Dummett and Prawitz do not consider how the meanings of modal operators
may be given by their theory of meaning for the logical constants. To investigate
in outline how this may be done is the purpose of this short paper.

According to proof-theoretic semantics, the rules governing a constant de-
fine its meaning. Prior’s tonk shows that the rules cannot be arbitrary. Dum-
mett and Prawitz impose the restriction that the introduction and elimination
rules for a constant ∗ be in harmony, so that ∗E does not license the deduction
of more consequences from A ∗B than are justified by the grounds for deriving
it as specified by ∗I. (See [4], [11], [12], [13], [14].) A necessary condition for
harmony is that deductions can be brought into normal form. A deduction is
in normal form if it contains neither maximal formulas nor maximal segments.
A maximal formula is one that is the conclusion of an I-rule and major premise
of an E-rule. A maximal segment is a sequence of formulas all except the last
of which are minor premises of ∨E and the last one is major premise of an
E-rule. 1

1 I am allowing myself a certain looseness in terminology, which, however, is quite common
in the literature. Strictly speaking, Dummett distinguishes intrinsic harmony, stability and
total harmony. Intrinsic harmony is captured by normalisation: the elimination rules of a
constant are justified relative to the introduction rules. Stability is harmony together with
a suitable converse: the introduction rules are also justified relative to the elimination rules.
Total harmony obtains if the constant is conservative over the rest of the language. Dummett
calls the permutative reduction steps to remove maximal segments ‘auxiliary reduction steps’.
Sometimes, as in the case of quantum disjunction, these cannot be carried out, which points
to a defect in the rules for the connective from the meaning-theoretical perspective [4, 250,
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Deductions in intuitionist logic I normalise [10, Ch 4]:

A∨I:
A ∨B

B
A ∨B

A ∨B

[A]i

Π
C

[B]j

Σ
C∨E: i,j

C

[A]i

Π
B⊃ I: i

A ⊃ B
A ⊃ B A⊃ E:

B
⊥⊥E:
C

A B∧I:
A ∧B

A ∧B∧E:
A

A ∧B
B

The constants occur only in conclusions of I-rules and major premises of E-
rules. Thus the conditions for using an I-rule and the consequences of using
an E-rule are given independently of the constants.

The rules of I exemplify Dummett’s notions of full-bloodedness and molec-
ularity in the theory of meaning [5], [6]. A full-blooded theory of meaning
characterises the knowledge of speakers in virtue of which they master a lan-
guage in such a way that it exhibits how a speaker who does not yet understand
an expression could acquire a grasp of it. A molecular theory of meaning does
so piecemeal and specifies the meanings of the expressions of a language one
group of expressions at a time. A speaker need not understand the constants
of I in order to be informed about the conditions for the application of their I-
and E-rules. To understand the grounds for deriving a formula with ∗ as main
operator, or to understand the consequences that follow from it, a speaker only
needs to grasp the meanings of some sentences, but not any sentences contain-
ing ∗. A speaker who does not already know the meanings of the constants of
intuitionist logic could acquire a grasp of their meanings by learning the rules
of inference of I. The rules are informative: the grounds and consequences of a
formula with ∗ as main operator are given without reference to ∗. Its meaning
is specified without presupposing that ∗ already has meaning.

Contrast the rules of I with standard rules for 2 in S4:
A

2I:
2A

2A
2E:

A
where in 2I all assumption on which A depends have the form 2B. The condi-
tions for applying 2I are not given independently of 2. Thus they presuppose
that 2 is meaningful. Hence they do not define its meaning. Put in terms of

289]. Dummett observes that normalisation implies that each logical constant is conservative
over the rest of the language [4, 250] and conjectures that ‘intrinsic harmony implies total
harmony in a context where stability prevails’ [4, 290]. Dummett and Prawitz only count
those segments as maximal that begin with the conclusion of an introduction rule. The more
general notion used here is found in [15]. It is required for philosophical reasons. For more
on these issues, see [8, Ch 2].
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speakers’ understanding, to be able to use 2I and to infer a formula of the
form 2A, a speaker already needs to know how to use formulas of the form 2B
in deductions, and so the speaker already needs to know the meaning of 2B.
Thus a speaker could not acquire a grasp of the meaning of 2 by being taught
those rules. As a definition of the meaning of 2, these rules are circular. The
I-rule for 2 presupposes that 2 already has meaning. 2

I propose that for the rules governing ∗ to define its meaning, they must
satisfy a Principle of Molecularity : ∗ must not occur in the premises and
discharged hypotheses of its I-rules, nor in any restrictions on their application,
and ∗ must not occur in the minor premises and discharged hypotheses of its
E-rules, nor in any restrictions on their application. Generalising, there should
be no sequence of constants ∗1...∗n such that the rules for ∗i refer to ∗j , i < j,
and the rules for ∗n refer to ∗1.

A promising system of modal logic from the present perspective was for-
malised by Pfenning and Davies [9]. It is based on Martin-Löf’s account of
judgements. They distinguish the judgment that a proposition is true from
the judgement that a proposition is valid. ` is interpreted as a hypothetical
judgement. Validity is defined in terms of truth and hypothetical judgements,
where · marks an empty collection of hypotheses and Γ are hypotheses of the
form ‘B true’: (1) If · ` A true, then A valid; (2) If A valid, then Γ ` A true.

Their system has axioms for the two kinds of hypotheses and rules for
implication and necessity. Formulas assumed to be valid are to the left of the
semi-colon, those assumed to be true to its right: 3

hyp
∆; Γ, A true,Γ′ ` A true

hyp∗
∆, B valid,∆′; Γ ` B true

∆; Γ, A true ` B true
⊃I

∆; Γ ` A ⊃ B true

∆; Γ ` A ⊃ B true ∆; Γ ` A true
⊃E

∆; Γ ` B true

∆; · ` A true
2I

∆; Γ ` 2A true

∆; Γ ` 2A true ∆, A valid; Γ ` C true
2E

∆; Γ ` C true

Call this system JM. It is a fragment of intuitionist S4. A normalisation
theorem can be proved for it. Its rules satisfy the Principle of Molecularity.

2 Modal Logic with Validity

In this section I reformulate, extend and generalise JM. The reformulation
is three-fold. (1) I use a system of natural deduction not in sequent calculus
style. (2) As any formula in JM is followed by either ‘valid’ or ‘true’, I drop
the latter and simply write ‘A’. This has a philosophical point: it accords with
an account of logical inference as relating propositions, not judgements. (3) I

2 Prawitz proves a normalisation theorem for intuitionist S4 and S5 [10, Ch 6]. Other such
systems of intuitionist S4 are formalised by Biermann and de Paiva [1] and von Plato [16].
Thus normalisation is not a sufficient condition for rules to define meaning.
3 The restriction on Γ of clause (2) of the definition is not explained further. The point may
well be to avoid circularity. It is effectively lifted in the axiom hyp∗.
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do not treat validity as a judgement either, but as a sentential operator. The
generalisation consists in the observation that validity is a relation between
the assumptions and the conclusion of a deduction. The extension consists in
formulating rules of inference for a higher level operator ` for this generalised
notion of validity. The rules for 2 appeal to it. HM extends I by ` and 2.

Formulas of level 0 are those of I extended by 2. Formulas of level 1 are
all formulas B1...Bn ` A, where B1...Bn, A are formulas of level 0, for 0 ≤ n.
B1...Bn ` A can be derived if there is a deduction of A from B1...Bn. Applying
an elimination rule for `, this is what we should get back. We may not know
how A was derived from B1...Bn, but as we know that there is such a deduction,
the inference of A from B1...Bn is valid. ` has the following rules:

[B1]i1 ...[Bn]in

Π
A

V I : i1...in
B1...Bn ` A

Σ
B1...Bn ` A

Ξ1

B1 ...

Ξn
Bn

V E :
A

where B1...Bn, 0 ≤ n, are representatives of all the open assumption classes of
Π in any order (as the Bs must be of level 0, there are no open assumptions
of level 1). Vacuous discharge is allowed: a representative to the left of ` may
belong to an empty assumption class of Π; this corresponds to Thinning.

V I and V E are generalisations of Pfenning’s and Davies’s definition of
validity cast into rules of a system of natural deduction. Next we generalise
the I- and E-rules for necessity. 2 is treated as a multi-grade constant which
has one formula to its right and 0 to finite n formulas on its left. I abbreviate
B1...Bn by Γ and write Γ ` A instead of B1...Bn ` A and [Γ]i instead of
[B1]i1 ...[Bn]in . The rules for 2 are:

[Γ]i

Π
A

2I : i
Γ2A

Σ
Γ2A

[Γ ` A]i

Ξ
C

2E : i
C

where in 2I, all open assumptions of level 0 of Π are in Γ (any other open
assumptions are of level 1 and have the form ∆ ` B). Vacuous discharge is
allowed. In 2E, C is a 0-level formula. I propose to read 2 as relative necessity.
It expresses that there is a necessary connection between the formulas in Γ and
A, or necessarily, A given Γ. 4 When Γ is empty, we get the usual unary
necessity operator: it behaves as in intuitionist S4.

Maximal formulas of the form Γ ` A are removed by the following reduction
step:

4 For a few more thoughts on this modal notion, see [7]. It should be noted that on this
reading, > is necessary relative to everything, while everything is necessary relative to ⊥:
the notion of relative necessity proposed here is not a relevant relative necessity.
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[B1]i1 ...[Bn]in

Π
A

i1...in
B1...Bn ` A

Ξ1

B1 ...

Ξn
Bn

A
Σ

;

Ξ1

[B1] ...

Ξn

[Bn]

Π
A
Σ

The restrictions on V I and 2I require that all open formulas or all open 0-
level formulas are discharged above their premises, and hence there can be no
application of these rules in Π below B1...Bn, except where an assumption
class [B]i is empty. So the transformation cannot lead to any violations of
restrictions on rules in Π. Any applications of those rules also remain correct
in Σ, as the reduction procedure does not introduce new open assumptions into
the deduction. For essentially the same reason, Prawitz’s reduction procedures
for maximal formulas and segments continue to work for the constants HM
shares with I.

Removing maximal formulas Γ2A is slightly more original:

[Γ]i

Π
A

i
Γ2A

[Γ ` A]j
Σ
Γ

A
Ξ
C

j
C
Θ

;

Σ
[Γ]

Π
A
Ξ
C
Θ

Σ are the deductions of the formulas in Γ. A maximal formula of type Γ2A can
only occur in the context on the left, unless Γ ` A is discharged vacuously by
2E, in which case its removal is trivial. The only thing one can do with Γ ` A
is to apply V E to it. Due to the restriction on C in 2E and the formation rules
for the language of HM, such a formula cannot be assumed and immediately
discharged by a rule. Due to the restrictions on V I and 2I, there can be no
applications of these rules below the Γs in Π (unless in the case of vacuous
discharge, which is trivial): hence concluding the Γs with the deductions in Σ
cannot lead to violations of rules in Π. Due to the restrictions on V I, there
can be no application of that rule below A in Ξ, as there is at least the open
assumption Γ ` A that prevents such an application. If there is an application
of 2I in Ξ, then all open assumptions of the deductions in Σ are of the form
∆ ` B, and hence they remain correct after the transformation. For similar
reasons, applications of these rules in Θ also remain correct.

All reduction steps reduce the complexity of the deduction: a maximal
segment is shortened, a maximal formula of higher degree than those that may
be introduced by the reduction procedure removed. A standard induction over
the complexity of deductions establishes the normalisation theorem for HM.
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3 Conclusion

HM is a natural system of modal logic with higher order rules. It fulfils neces-
sary conditions for a proof-theoretic account of the meaning of 2. Deductions
normalise. Its rules are harmonious and satisfy the molecularity principle. The
meaning of 2 is given in terms of the meaning of `, the meaning of which is
given in terms of inferences in I.

HM generalises JM in introducing a more general notion of validity and
allowing validities to occur as conclusions of rules. But it remains close to JM,
in that the restrictions on V I and the rules for 2 are directly lifted from JM.
A natural question is how the restrictions on V I could be loosened to allow
further ways of deriving Γ ` A. The restriction on V I blocks a derivation of a
version of cut: If (1) Γ ` A and (2) ∆, A ` C, then (3) Γ,∆ ` C. It is possible
to conclude A from (1) by assuming all formulas in Γ, and then to conclude C
from (2) by assuming all formulas in ∆, but the restriction on V I prevents the
conclusion of (3), as besides the 0-level formulas in Γ and ∆, the conclusion C
depends on the undischarged first level formulas Γ ` A and ∆, A ` C.

Došen proposes systems of higher order sequents for intuitionist and classi-
cal S4 and S5 ([2], [3]), in which, he explains, 2A means ‘A is assumed as a
theorem’. This sounds similar to Pfenning’s and Davies’s account of modality.
Došen’s system implements a stricter distinction of levels of formulas and rules
than HM. To the left and right of Došen’s turnstile of level 2, there must be
formulas of level 1, not of level 1 or 0. Thus transposed into a system of natural
deduction, Došen’s rules for 2, which are of level 2, would require premises and
conclusions of level 1. These rules are derivable using present the rules if V I
may also be applied when all assumptions on which its premise depends are of
level 1, i.e. of form ∆ ` C. Furthermore, with the restriction on V I so loos-
ened that amongst the assumptions on which its premise depends there may
be formulas of level 1, the version of cut mentioned in the previous paragraph
becomes derivable. Modifying HM is an avenue for further research.
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[2] Došen, K., Sequent-systems for modal logic, The Journal of Symbolic Logic 50 (1985),
pp. 149–168.
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Abstract

We present a labelled sequent system and a nested sequent system for intuitionistic
modal logics equipped with two relation symbols, one for the accessibility relation
associated with the Kripke semantics for modal logics and one for the preorder relation
associated with the Kripke semantics for intuitionistic logic. Both systems are in close
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1 Introduction

Structural proof theoretic accounts of modal logic can adopt the paradigm of
labelled deduction, in the form of e.g. labelled sequent systems [12,7], or the one
of unlabelled deduction, in the form of e.g. nested sequent systems [1,9].

These generalisations of the sequent framework, inspired by relational se-
mantics, are needed to treat modalities uniformly. By extending the ordinary
sequent structure with one extra element, either relational atoms between la-
bels or nested bracketing, they encode respectively graphs or trees in the se-
quents, giving them enough power to represent modalities.

Similarly, proof systems have been designed for intuitionistic modal logic
both as labelled [10] and as nested [11,4,3] sequent systems. Surprisingly, in
nested and labelled sequents, extending the sequent structure with the same
one extra element is enough to obtain sound and complete systems.

This no longer matches the relational semantics of these logics, which re-
quires to combine both the relation for intuitionistic propositional logic and the
one for modal logic. More importantly, it leads to deductive systems that are
not entirely satisfactory; they cannot as modularly capture axiomatic exten-
sions (or equivalently, restricted semantical conditions) and, in particular, can
only provide decision procedures for a handful of them [10].



Marin and Morales 45

This lead us to develop a fully structured approach to intuitionistic modal
proof theory capturing both the modal accessibility relation and the intuition-
istic preorder relation. A fully labelled framework, described succintly in Sec-
tion 3, has already allowed us to obtain modular systems for all intuitionis-
tic Scott-Lemmon logics [6]. In an attempt to make this system amenable
for proof-search and decision procedures, we have started investigated a fully
nested framework, presented in Section 4. We would be particularly interested
in a suitable system for logic IS4, whose decidability is not known; we discuss
this direction in Section 5.

2 Intuitionistic modal logic

The language of intuitionisitic modal logic is the one of intuitionistic proposi-
tional logic with the modal operators 2 and 3. Starting with a set A of atomic
propositions, denoted a, modal formulas are constructed from the grammar:

A ::= a | ⊥ | (A ∧A) | (A ∨A) | (A ⊃A) | 2A | 3A

The axiomatisation of intuitionistic modal logic IK [8,2] is obtained from intu-
itionistic propositional logic by adding:

• the necessitation rule: 2A is a theorem if A is a theorem; and

• the following five variants of the distributivity axiom:

k1 : 2(A ⊃B) ⊃ (2A ⊃2B) k3 : 3(A ∨B) ⊃ (3A ∨3B) k5 : 3⊥ ⊃⊥
k2 : 2(A ⊃B) ⊃ (3A ⊃3B) k4 : (3A ⊃2B) ⊃2(A ⊃B)

Definition 2.1 A bi-relational frame consists of a set of worlds W equipped
with an accessibility relation R and a preorder ≤ satisfying:

(F1) For x, y, z ∈W , if xRy and y ≤ z, there exists u s.t. x ≤ u and uRz.

(F2) For x, y, z ∈W , if x ≤ y and xRz, there exists u s.t. yRu and z ≤ u.

Definition 2.2 A bi-relational model is a bi-relational frame with a monotone
valuation function V : W → 2A.

We write x  a if a ∈ V (x) and, by definition, it is never the case that
x  ⊥. The relation  is extended to all formulas by induction, following the
rules for both intuitionistic and modal Kripke models:

x  A ∧B iff x  A and x  B

x  A ∨B iff x  A or x  B

x  A ⊃B iff for all y with x ≤ y, if y  A then y  B

x  2A iff for all y and z with x ≤ y and yRz, z  A (1)

x  3A iff there exists a y such that xRy and y  A

Definition 2.3 A formula A is valid in a frame 〈W,R,≤〉, if for all monotone
valuations V and for all w ∈W , we have w  A

Theorem 2.4 ([2,8]) A formula A is a theorem of IK if and only if A is valid
in every bi-relational frame.
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id
B, x ≤ y,L, x:A⇒ R, y:A

⊥L B,L, x:⊥ ⇒ R
B,L, x:A, x:B ⇒ R

∧L B,L, x:A ∧B ⇒ R
B,L ⇒ R, x:A B,L ⇒ R, x:B

∧R B,L ⇒ R, x:A ∧B
B,L, x:A⇒ R B,L, x:B ⇒ R

∨L B,L, x:A ∨B ⇒ R
B,L ⇒ R, x:A, x:B

∨R B,L ⇒ R, x:A ∨B
B,L, x ≤ y, y:A⇒ R, y:B

⊃L y freshB,L ⇒ R, x:A⊃B
B, x ≤ y,L ⇒ R, y:A B, x ≤ y,L, y:B ⇒ R

⊃R B, x ≤ y,L, x:A⊃B ⇒ R
B, x ≤ y, yRz,L, x:2A, z:A⇒ R

2L B, x ≤ y, yRz,L, x:2A⇒ R
B, x ≤ y, yRz,L ⇒ R, z:A

2R y, z freshB,L ⇒ R, x:2A

B, xRy,L, y:A⇒ R
3L y freshB,L, x:3A⇒ R

B, xRy,L ⇒ R, x:3A, y:A
3R B, xRy,L ⇒ R, x:3A

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

B, x ≤ x,L ⇒ R
refl≤ B,L ⇒ R

B, x ≤ y, y ≤ z, x ≤ z,L ⇒ R
trans≤ B, x ≤ y, y ≤ z,L ⇒ R

B, xRy, y ≤ z, x ≤ u, uRz,L ⇒ R
F1 u freshB, xRy, y ≤ z,L ⇒ R
B, xRy, x ≤ z, y ≤ u, zRu,L ⇒ R

F2 u freshB, xRy, x ≤ z,L ⇒ R

Fig. 1. System labIK≤

3 Fully labelled sequent calculus

Echoing the definition of bi-relational structures, we consider an extension of
labelled deduction to the intuitionistic setting that uses two sorts of relational
atoms, one for the modal accessibility relation R and another one for the intu-
itionistic preorder relation ≤ (similarly to [5] for epistemic logic).

Definition 3.1 A two-sided intuitionistic fully labelled sequent is of the form
B,L ⇒ R where B denotes a set of relational atoms xRy and preorder atoms
x ≤ y, and L and R are multi-sets of labelled formulas x:A (for x and y taken
from a countable set of labels and A an intuitionistic modal formula).

We obtain a proof system labIK≤, displayed on Figure 1, for intuitionistic
modal logic in this formalism. Most rules are similar to the ones of Simp-
son [10], but some are more explicitly in correspondence with the semantics by
using the preorder atoms. For instance, the rules introducing the 2-connective
correspond to (1). Furthermore, our system must incorporate the conditions
(F1) and (F2) into the deductive rules F1 and F2, and rules refl≤ and trans≤ are
necessary to ensure that the preorder atoms behave as a preorder on labels.
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id
Γ{A•, A◦}

⊥L

Γ{⊥•}
Γ{A•, B•}

∧L

Γ{A ∧B•}
Γ{A◦} Γ{B◦}

∧R

Γ{A ∧B◦}
Γ{A•} Γ{B•}

∨L

Γ{A ∨B•}
Γ{A◦, B◦}

∨R

Γ{A ∨B◦}
Γ1{A⊃B•, A◦} Γ1{B•}

⊃L

Γ1{A⊃B•}
Γ{JA•, B◦K}

⊃R

Γ{A⊃B◦}
Γ1{2A•, [A•,Γ2]}

2L

Γ1{2A•, [Γ2]}
Γ{J[A◦]K}

2R

Γ{2A◦}
Γ{[A•]}

3L

Γ{3A•}
Γ1{3A◦, [A◦,Γ2]}

3R

Γ1{3A◦, [Γ2]}
Γ1{A◦, JA◦,Γ2K}

monR
Γ1{JA◦,Γ2K}

Γ1{A•, JA•,Γ2K}
monL

Γ1{A•, JΓ2K}
Γ1{[Γ2], J[Γ3]K}

F1

Γ1{[Γ2, JΓ3K]}

Fig. 2. System nIK≤

Theorem 3.2 For any formula A, the following are equivalent.

(i) A is a theorem of IK

(ii) A is provable in labIK≤ + cut with
B1,L ⇒ R, z:C B2,L, z:C ⇒ R

cut
B1,B2,L ⇒ R

(iii) A is provable in labIK≤

The proof is a careful adaptation of standard techniques (see [6] for details).

4 Fully nested sequent calculus

In standard nested sequent notation, brackets [·] are used to indicate the parent-
child relation in the modal accessibility tree. (·)• and (·)◦ annotations are used
to indicate that the formulas would occur on the left-hand-side or right-hand-
side of a sequent, respectively, in the absence of the sequent arrow.

To make it fully structured again, we enhance the structure with a second
type of bracketting J·K to encode the preorder relation.

Definition 4.1 A two-sided intuitionistic fully nested sequent is constructed
from the grammar: Γ ::= ∅ | A•,Γ | A◦,Γ | [Γ] | JΓK

The obtained nested sequent calculus nIK≤ is displayed in Figure 2. The
idea is similar to the fully labelled calculus but the shift of paradigm allowed
us to make different design choices. In particular, the underlying tree-structure
prevents us to express the rule F2, but its absence is offset by the monotonicity
rules monL and monR, which were admissible in labIK≤. Another benefit of this
addition is that rules refl≤ and trans≤ do not need any equivalent here.

5 Extensions: example of transitivity

As mentioned in the introduction, one of our motivation is to investigate de-
cision procedure for axiomatic extensions of IK, for instance IS4, intuitionistic
logic of reflexive transitive frames. We will therefore illustrate our approach
taking transitivity as a test-case.
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The frame condition of transitivity (∀xyz. xRy ∧ yRz ⊃ xRz) can be ax-
iomatised by adding to IK the conjunction of the two versions of the 4-axiom:

42 : 2A ⊃22A 43 : 33A ⊃3A

which are equivalent in classical modal logic. However, in intuitionistic modal
logic they are not and they can be added to IK independently. From [8] we know
they are in correspondence respectively with the following frame conditions:

∀xyz.((xRy∧yRz)⊃∃u.(x ≤ u∧uRz)) ∀xyz.((xRy∧yRz)⊃∃u.(z ≤ u∧xRu)) (2)

Following Simpson [10] we could extend our basic sequent system for IK to
IK4 = IK + (42 ∧ 43) with the rule

B, wRv, vRu,wRu,L ⇒ R
transR B, wRv, vRu,L ⇒ R

Incorporating the preorder symbol into the syntax too, allowed us however
to translate the conditions in (2) into separate inference rules for 42 and 43:

B, xRy, yRz, uRz, x ≤ u,L ⇒ R
42 u freshB, xRy, yRz,L ⇒ R

B, xRy, yRz, xRu, z ≤ u,L ⇒ R
43 u freshB, xRy, yRz,L ⇒ R

These extensions for labIK≤ are sound and complete; more generally, Theo-
rem 3.2 can be extended to the class of intuitionisitc Scott-Lemmon logics [6].

Similar results for the fully nested sequent system are subject of ongoing
study. Previous nested systems for intuitionistic modal logics [11,4] can be
extended from IK to IK4 by simply adding the following rules:

Γ1{2A•, [2A•,Γ2]}
2L4

Γ1{2A•, [Γ2]}
Γ1{3A◦, [3A◦,Γ2]}

3R4

Γ1{3A◦, [Γ2]}

These rules are logical rather than structural as their labelled counterpart,
making them usually more suitable for proof search procedures.
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Abstract

The discussion about how to put together Gentzen’s systems for classical and intuitionistic logic
in a single unified system is back in fashion. Indeed, recently Prawitz and others have been
discussing the so called Ecumenical Systems, where connectives from these logics can co-exist
in peace. In Prawitz’ system, the classical logician and the intuitionistic logician would share
the universal quantifier, conjunction, negation, and the constant for the absurd, but they would
each have their own existential quantifier, disjunction, and implication, with different meanings.
Prawitz’ main idea is that these different meanings are given by a semantical framework that
can be accepted by both parties. In a recent work, Ecumenical sequent calculi and a nested
system were presented, and some very interesting proof theoretical properties of the systems
were established. In this work we extend Prawitz’ Ecumenical idea to alethic K-modalities.

Keywords: Ecumenical systems, modalities, labeled systems, Kripke semantics.

1 Introduction
In [3] Dag Prawitz proposed a natural deduction system for what was later called
Ecumenical logic (EL), where classical and intuitionistic logic could coexist in peace.
In this system, the classical logician and the intuitionistic logician would share the
universal quantifier, conjunction, negation, and the constant for the absurd (the neutral
connectives), but they would each have their own existential quantifier, disjunction,
and implication, with different meanings. Prawitz’ main idea is that these different
meanings are given by a semantical framework that can be accepted by both parties.

1 This work was partially financed by CNPq and CAPES/Brazil - Finance Code 001.
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Initial and structural rules

A,Γ⇒ A init
Γ⇒ ⊥
Γ⇒ A W

Propositional rules

A, B,Γ⇒ C
A ∧ B,Γ⇒ C ∧L Γ⇒ A Γ⇒ B

Γ⇒ A ∧ B ∧R
A,Γ⇒ C B,Γ⇒ C

A ∨i B,Γ⇒ C
∨iL

Γ⇒ A j

Γ⇒ A1 ∨i A2
∨iR j

A,Γ⇒ ⊥ B,Γ⇒ ⊥
A ∨c B,Γ⇒ ⊥ ∨cL

Γ,¬A,¬B⇒ ⊥
Γ⇒ A ∨c B

∨cR
A→i B,Γ⇒ A B,Γ⇒ C

Γ, A→i B⇒ C
→i L

Γ, A⇒ B
Γ⇒ A→i B

→i R
A→c B,Γ⇒ A B,Γ ⇒ ⊥

A→c B,Γ⇒ ⊥ →c L
Γ, A,¬B⇒ ⊥
Γ⇒ A→c B

→c R

¬A,Γ⇒ A
¬A,Γ⇒ ⊥ ¬L

Γ, A⇒ ⊥
Γ⇒ ¬A ¬R ⊥,Γ⇒ A ⊥L

Pi,Γ⇒ ⊥
Pc,Γ⇒ ⊥ Lc

Γ,¬Pi ⇒ ⊥
Γ⇒ Pc

Rc

Quantifiers
A[y/x],∀x.A,Γ⇒ C
∀x.A,Γ⇒ C ∀L

Γ⇒ A[y/x]
Γ⇒ ∀x.A ∀R

A[y/x],Γ⇒ C
∃i x.A,Γ⇒ C

∃iL
Γ⇒ A[y/x]
Γ⇒ ∃i x.A

∃iR
A[y/x],Γ⇒ ⊥
∃c x.A,Γ⇒ ⊥ ∃cL

Γ,∀x.¬A⇒ ⊥
Γ⇒ ∃c x.A

∃cR

Fig. 1. Ecumenical sequent system LEci. In rules ∀R,∃iL,∃cL, the eigenvariable y is fresh.

While proof-theoretical aspects were also considered, his work was more focused
on investigating the philosophical significance of the fact that classical logic can be
translated into intuitionistic logic.

In this work, we propose an extension of EL with the alethic modalities of necessity
and possibility. There are many choices to be made and many relevant questions to be
asked, e.g.: what is the ecumenical interpretation of Ecumenical modalities? Should
we add classical, intuitionistic, or neutral versions for modal connectives? What is
really behind the difference between the classical and intuitionistic notions of truth?

We propose an answer for these questions in the light of Simpson’s meta-logical
interpretation of modalities [4] by embedding the expected semantical behavior of the
modal operator into the Ecumenical first-order logic.

2 The system LEci
The language L used for Ecumenical systems is described as follows. We will use a
subscript c for the classical meaning and i for the intuitionistic, dropping such subscripts
when formulae/connectives can have either meaning.

Classical and intuitionistic n-ary predicate symbols (Pc, Pi, . . .) co-exist in L but
have different meanings. The neutral logical connectives {⊥,¬,∧,∀} are common for
classical and intuitionistic fragments, while {→i,∨i,∃i} and {→c,∨c,∃c} are restricted
to intuitionistic and classical interpretations, respectively.

The sequent system LEci (Fig. 1) was presented in [2] as the sequent counterpart
of Prawitz natural deduction system. Observe that the rules Rc and Lc describe the
intended meaning of a classical predicate Pc from an intuitionistic predicate Pi.

The following are easily provable in LEci:
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(i) `LEci (A ∨c B)↔i ¬(¬A ∧ ¬B);

(ii) `LEci (A→c B)↔i ¬(A ∧ ¬B);

(iii) `LEci (∃cx.A)↔i ¬(∀x.¬A).

(iv) `LEci ∀x.A→i ¬∃cx.¬A but 0LEci ¬∃cx.¬A→i ∀x.A in general.

Theorems (i) to (iii) are of interest since they relate the classical and the neutral
operators: the classical connectives can be defined using negation, conjunction, and
the universal quantifier. Observe that (iii) and (iv) reveal the asymmetry between
definability of quantifiers: while the classical existential can be defined from the
universal quantification, the other way around is not true, in general.

3 Ecumenical modalities
The language of (propositional, normal) modal formulas consists of a denumerable set
P of propositional symbols and a set of propositional connectives enhanced with the
unary modal operators � and ^ concerning necessity and possibility, respectively [1].

We will follow the approach in [4], where a modal logic is characterized by the
respective interpretation of the modal model in the meta-theory (called meta-logical
characterization).

Formally, given a variable x, we recall the standard translation [·]x from modal
formulas into first-order formulas with at most one free variable x: for any P ∈ P, a
unary predicate symbol P is associated to it and [P]x := P(x); [⊥]x := ⊥; for any binary
connective ?, [A ? B]x := [A]x ? [B]x; for the modal connectives

[�A]x := ∀y(R(x, y)→ [A]y) [^A]x := ∃y(R(x, y) ∧ [A]y)

where R(x, y) is a binary predicate.
The object modal logic ML is then interpreted in the first-order meta logic FOL as

`ML A iff `FOL ∀x.[A]x

Hence, if FOL is classical, the former definition characterizes the classical modal logic
K [1], while if it is intuitionistic, it characterizes the intuitionistic modal logic IK [4].

In this work, we will adopt first-order EL as the meta-theory (given by the system
LEci), hence characterizing what we will defined as the ecumenical modal logic EK.

3.1 An Ecumenical view of modalities
The language of Ecumenical modal formulas consists of a denumerable set P of (Ecu-
menical) propositional symbols and the set of Ecumenical connectives enhanced with
unary Ecumenical modal operators. There is no canonical definition of constructive
or intuitionistic modal logics. Here we will mostly follow the approach in [4] for
justifying our choices for the Ecumenical interpretation for possibility and necessity.

The ecumenical translation [·]e
x from propositional ecumenical formulas into LEci is

defined in the same way as the modal translation [·]x in the last section. For the case of
modal connectives, our proposal is that the box modality is a neutral connective, while
the diamond has two possible interpretations: classical and intuitionistic, as its leading
connective is an existential quantifier. Hence we should consider the ecumenical
modalities: �,^i,^c, determined by the translations
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Initial and structural rules

x : A,Γ ` x : A init
Γ ` y : ⊥
Γ ` x : A W

Propositional rules

x : A, x : B,Γ ` z : C
x : A ∧ B,Γ ` z : C ∧L

Γ ` x : A Γ ` x : B
Γ ` x : A ∧ B ∧R

x : A,Γ ` z : C x : B,Γ ` z : C
x : A ∨i B,Γ ` z : C

∨iL

Γ ` x : A j

Γ ` x : A1 ∨i A2
∨iR j

x : A,Γ ` x : ⊥ x : B,Γ ` x : ⊥
x : A ∨c B,Γ ` x : ⊥ ∨cL

Γ, x : ¬A, x : ¬B ` x : ⊥
Γ ` x : A ∨c B

∨cR

x : A→i B,Γ ` x : A x : B,Γ ` z : C
x : A→i B,Γ ` z : C

→i L
x : A,Γ ` x : B
Γ ` x : A→i B

→i R
x : A,Γ ` x : ⊥

Γ ` x : ¬A ¬R

x : A→c B,Γ ` x : A x : B,Γ ` x : ⊥
x : A→c B,Γ ` x : ⊥ →c L

x : A, x : ¬B,Γ ` x : ⊥
Γ ` x : A→c B

→c R
x : ¬A,Γ ` x : A
x : ¬A,Γ ` x : ⊥ ¬L

x : ⊥,Γ ` z : C
⊥ Γ, x : Pi ` x : ⊥

Γ, x : Pc ` x : ⊥ Lc
Γ, x : ¬Pi ` x : ⊥

Γ ` x : Pc
Rc

Modal rules

xRy, y : A, x : �A,Γ ` z : C
xRy, x : �A,Γ ` z : C �L

xRy,Γ ` y : A
Γ ` x : �A �R

xRy, y : A,Γ ` z : C
x : ^iA,Γ ` z : C

^iL

xRy,Γ ` y : A
xRy,Γ ` x : ^iA

^iR
xRy, y : A,Γ ` x : ⊥
x : ^cA,Γ ` x : ⊥ ^cL

x : �¬A,Γ ` x : ⊥
Γ ` x : ^cA

^cR

Fig. 2. Ecumenical modal system labEK. In rules �R,^iL,^cL, the eigenvariable y is fresh.

[�A]e
x := ∀y(R(x, y)→i [A]e

y)
[^iA]e

x := ∃iy(R(x, y) ∧ [A]e
y)

[^cA]e
x := ∃cy(R(x, y) ∧ [A]e

y)

Observe that, due to equivalence (iii), we have ^cA↔i ¬�¬A. We will denote by EK
the Ecumenical modal logic meta-logically characterized by LEci via [·]e

x.

4 A labeled system for EK
One of the advantages of having an Ecumenical framework is that some well known
classical/intuitionistic systems arise as fragments [2]. In the following, we will seek
such systems by proposing a labeled sequent system for Ecumenical modalities.

The basic idea behind labeled proof systems for modal logic is to internalize
elements of the associated Kripke semantics (namely, the worlds of a Kripke structure
and the accessibility relation between them) into the syntax. Labeled sequents have the
form Γ ` z : C, where Γ is a multiset containing labeled formulas of the form x : A and
relational atoms of the form xRy, where x, y range over a set of variables and A is a
modal formula.

Following [4], the meta-logical soundness and completeness theorems are proved
via a translation between rule applications in labEK and derivations in LEci.

Theorem 4.1 Let Γ be a multiset of labeled modal formulas and denote [Γ] = {R(x, y) |
xRy ∈ Γ} ∪ {[B]e

x | x : B ∈ Γ}. The following are equivalent:
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1. Γ ` x : A is provable in labEK.

2. [Γ]⇒ [A]e
x is provable in LEci.

Finally, observe that, when restricted to the intuitionistic and neutral operators,
labEK matches exactly Simpson’s sequent system L�^ [4].

5 Discussion and conclusion
This is a short version of the text available at https://arxiv.org/abs/2005.14325.
There, the interested reader may find: all the proofs; an axiomatic and semantical
interpretation of Ecumenical modalities; an extension of the discussion to relational
systems with the usual restrictions on the relation in the Kripke model; and a discussion
about logical Ecumenism in general.

We end the present text by noting that there is an obvious connection between the
Ecumenical approach and Gödel-Gentzen’s double-negation translations of classical
logic into intuitionistic logic. This could lead to the erroneous conclusion that the
ecumenical refinement of classical logic is essentially the same refinement produced by
such translation. But, on a closer inspection, the ecumenical approach is not essentially
Gödel-Gentzen translation:

(i) Classical mathematical practice does not require that every occurrence of ∨ in
real mathematical proofs be replaced by its Gödel-Gentzen translation: there is no
reason to translate the occurrence of ∨ in the theorem (A→ (A ∨ B)). Given that
the Gödel-Gentzen translation function systematically and globally eliminates
every occurrence of ∨ and ∃ from the language of classical logic, one may say
that the ecumenical system reflects more faithfully the “local” necessary uses of
classical reasoning.

(ii) The Gödel-Gentzen constructive refinement is based on a (systematic and total)
translation function between the language of classical logic and the language
of intuitionistic logic, while the ecumenical refinement considers how classical
theorems are proved.

That is, the ecumenical refinement “interpolates” the Gödel-Gentzen-translation func-
tion. And this is extended, in our work, to reasoning with modalities.
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Abstract

We prove completeness of preferential conditional logic with respect to convexity over
finite sets of points in the Euclidean plane. A conditional is defined to be true in a
finite set of points if all extreme points of the set interpreting the antecedent satisfy
the consequent. Equivalently, a conditional is true if the antecedent is contained in
the convex hull of the points that satisfy both the antecedent and consequent. Our
result is then that every consistent formula without nested conditionals is satisfiable
in a model based on a finite set of points in the plane. The proof relies on a result
by Richter and Rogers showing that every
finite abstract convex geometry can be represented by convex polygons in the plane.

Keywords: conditional logic, convex geometry, nonmonotonic consequence relations.

1 Introduction

Preferential conditional logic was introduced by Burgess [3] and Veltman [17]
to axiomatize the validities of the conditional with respect to a semantics in
models based on preorder. In this semantics a conditional ϕ ; ψ is true with
respect to a preorder over a finite set of worlds if the consequent ψ is true at all
worlds that are minimal in the order among the worlds at which the antecedent
ϕ is true. Both Burgess and Veltman observe that completeness already holds
for partial orders instead of just preorders.

Preferential conditional logic has also been shown to be complete with re-
spect to semantic interpretations that are quite different from the semantics
in terms of partial orders. Most notable are the interpretation of validity of
inferences between conditionals as preservation of high conditional probability
[1,5] and premise semantics, where the conditional is interpreted relative to a
premise set. A premise set is a family of sets of worlds, thought of as proposi-
tions that encode relevant background information from the linguistic context
[16,9]. In the paper summarized here [10] we provide yet another interpretation
to preferential conditional logic. We show that it is complete with respect to
convexity over finite sets of points in the Euclidean plane. This places condi-
tional logic into the tradition of modal logics with a natural spatial semantics,
most famous of which is the completeness of S4 with respect to the topology
of the real line [13].
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true conditionals:
(p ∨ q) ; r
(¬p ∨ ¬q) ; ¬p
> ; (q ↔ r)

false conditionals:
p; r
¬r ; ¬q
> ; r

pqr pqr

pqr

pqr

pqr

Fig. 1. A finite set of points in the plane and examples of conditionals that are true
or false relative to this set of points.

2 Evaluating the conditional in the plane

To illustrate our semantics consider the finite set of points in Figure 1. Think
of these points as satisfying propositional letters as indicated in their label. For
instance the point pqr in the upper right corner satisfies q and r but not p.
Our semantics is such that a conditional ϕ ; ψ is true relative to such a set
of points if the set of points at which ϕ is true is completely contained in the
convex hull of the set of points at which both ϕ and ψ are true. Recall that a
convex set is a set that for any two points in the set also contains the complete
line segment between these points. Intuitively, these are the sets without holes
or dents. The convex hull of a set is the least convex set that contains the set.
In Figure 1 the conditional (p∨ q) ; r is true because all points at which p∨ q
is true are contained in the convex hull of the the points where p ∨ q and r
are both true, which is the shaded area in the figure. The conditional p ; r
is however not true in the example because the point pqr satisfies p but it not
contained in the convex hull of the points pqr and pqr, which are all the points
that satisfy p and q.

An equivalent formulation of our semantic clause is that a conditional ϕ; ψ
is true if the consequent ψ is true at all the extreme points of the set of points
where the antecedent ϕ is true. An extreme point of some set is a point in
the set that is not in the convex hull of all the other points from the set.
Intuitively, the extreme points of some set are the outermost points of that set.
In the example from Figure 1 we have that pqr, pqr and pqr are the extreme
points of the shaded area. On the other hand pqr is not an extreme point of
the shaded area because it is in the convex hull of the points pqr, pqr and pqr.
Note that in this formulation of the semantic clause for a conditional ϕ ; ψ
the extreme points of the set of points satisfying the antecedent ϕ play a role
that is analogous to the minimal ϕ-worlds in the order semantics.

Our semantics is only defined for formulas that do not contain nested condi-
tionals and in which all propositional letters occur in the scope of a conditional.
It is possible to overcome this restriction but this would not significantly influ-
ence the axiomatic questions that this paper is concerned with.
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The main completeness result of our paper can be formulated as follows:
All finite constellation of points in the plane of the kind shown in Figure 1
satisfy all the theorems in preferential conditional logic and every formula that
is not a theorem of the logic is false in some such constellation.

3 The proof of completeness

The completeness proof for the semantics in the plane consists of two steps:

(i) We first observe that preferential conditional logic is complete for a se-
mantic in models based on finite abstract convex geometries.

(ii) We then show that every finite abstract convex geometry can be repre-
sented by a finite set of points in the plane in such a way that all true
formulas of conditional logic are preserved.

From these two steps we obtain our completeness result because by the first
step every consistent formula ϕ is true in some finite model based on abstract
convex geometries and by the second step this model can be transformed into
a concrete model of ϕ that is based on a finite set of points in the plane. We
now describe these two steps in greater detail.

3.1 Abstract convex geometries

In the first step we make use of the notion of a convex geometry [4,8,2]. For-
mally, convex geometries are families of sets that are closed under arbitrary
intersections and have the anti-exchange property, which is a separation prop-
erty that is reminiscent of the T0 separation property in topology. Convex
geometries are a combinatorial abstraction of the notion of a convex set in Eu-
clidean spaces, such as the Euclidean plane. This is somewhat analogous to how
topological spaces are an abstraction from the notions of open and closed sets in
Euclidean spaces. The convex sets in any subspace of an Euclidean space form
a convex geometry. But it is not the case that every abstract convex geometry,
or even every finite abstract convex geometry, is isomorphic to a subspace of
some Euclidean space. An easy way to see this is that in any Euclidean space
all singleton sets are convex, which is not enforced by the definition of a convex
geometry.

One can view the semantics in convex geometries as a generalization of the
order semantics over partial orders. The family of upwards closed sets in any
partial order form a convex geometry. Moreover, a conditional is true relative
to a given partial order if and only if it is also true in the convex geometry of
all upwards closed sets in the order.

The semantics in abstract convex geometries can also be seen as a further
development of premise semantics. The convex sets in our semantics play the
role of the complements of the sets of worlds in the premise set of premise
semantics. There is, however, a crucial difference in the semantic clause with
which a conditional is interpreted in a family of sets of worlds. Motivated by
linguistic considerations premise semantics uses a quite sophisticated semantic
clause that is insensitive to closing the family of sets under intersections. In
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[14,6] it is observed that for developing proof systems for preferential condi-
tional logic it is beneficial to lift the implicit assumption that family of sets of
worlds, relative to which the conditional is evaluated, is closed under intersec-
tions. To achieve this they use a simplified semantic clause from [11] that is
sensitive to closure under intersections. When one uses the conditional with
this semantic clause relative to a family of sets of worlds that is not closed
under intersection different formulas turn out to be true than would be true
relative to the same family of sets of worlds using the semantic clause from
premise semantics. Thus, it is helpful to distinguish this new setting from
premise semantics and call it neighborhood semantics.

This neighborhood semantics is also the starting point for the categorical
correspondence in [12]. This paper establishes a correspondence between finite
Boolean algebras with additional structure that encodes non-nested preferential
conditional logic and families of subsets of the atoms of these algebras. To
obtain a well-behaved correspondence it is necessary to allow for families of sets
that are not closed under intersections. However, one can require closure under
unions and a separation property that is dual to the anti-exchange property
mentioned above. If one then considers the complements of all the sets in a
such a family of sets then one obtains a family that is a convex geometry.

3.2 Representation of convex geometries in the plane

The second step of proof is to show that for every abstract convexity there is a
finite subspace of the plane that satisfies the same formulas in conditional logic.
This step is not trivial because, as we already explained above, not every finite
convex geometry is isomorphic to a subspace of some Euclidean space. However,
following [7], there has recently been a lot of literature on representing finite
convex geometries inside of Euclidean spaces using more complex constructions
than just selecting a subspace. For the proof of completeness we make use of
one such representation result by [15]. Their construction shows that every
finite convex geometry is isomorphic to the convexity over a set of polygons in
the plane, such that every point in the original convex geometry corresponds
to a whole polygon in this set. This representation is such that the extreme
points of any two polygons in the set of polygons are disjoint. One can thus
define a function that maps an extreme point of some polygon in the set to the
point in the original convex geometry that the polygon is representing. The
domain of this function can be considered to be the finite subspace of the plane
consisting of all the points that are an extreme point of one of the polygons.
The crucial insight is then that this function is a strong morphism of convex
geometries in a sense defined in [12], which guarantees the preservation of true
formulas in conditional logic.

4 Limitative results and open questions

The completeness result for finite sets of points in the plane cannot be improved
to a completeness result with respect to finite set of points on the real line. The
reason is that the line validates additional formulas that are not theorems of
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preferential conditional logic. As an example consider the formula

δ2 = (p ∨ q ∨ r ; s) → (p ∨ q ; s) ∨ (p ∨ r ; s) ∨ (q ∨ r ; s).

To get an intuition for why δ2 is valid in every finite set of points on the line
consider the extreme points of the set of all points satisfying p∨q∨r. There are
at most two such extreme points, namely the maximal and minimal elements
of this set in the standard order on the reals. Now these two worlds are also the
extreme points of at least one of the sets interpreting p∨q, p∨r and q∨r. This
example rises the question what axioms are necessary to obtain completeness
for the conditional logic of the real line.

A further open question is whether it is possible to prove completeness of
preferential conditional logic with respect to infinite sets of points in the plane.
The semantic clause taken from neighborhood semantics can also be used on
infinite convex geometries, but most of the methods used in our completeness
proof apply only to the finite case.
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Abstract

While attempting to prove that the logic ILWR is modally complete, we found a new
series of interpretability principles. In this short paper we sketch the proofs that the
series is arithmetically sound, show that principles are valid in ordinary ILWR-frames,
and evaluate the possible impact of our results.
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1 Introduction

Interpretability logics are propositional modal logics extending provability log-
ics with a binary modality � denoting formal interpretability over some base
theory T . We shall mostly be interested in so-called sequential theories. These
theories can code pairs of objects and as such the natural numbers can natu-
rally be embedded in them together with coding machinery for syntax so that
indeed the notion of interpretability can be formalised. Then, for some sequen-
tial base theory T , the expression A�B will stand for “T together with some
arithmetical reading of B is interpretable in T together with the arithmetical
reading of A”.
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The language of interpretability logics extends the basic (mono)modal lan-
guage with formulas of form A�B:

A ::= ⊥ | Var | A→ A |2A | A� A

where Var generates a countable set of propositional variables. Since usually
we take the logic IL as our base logic, and IL ` 2¬A↔ A�⊥, we can choose
to leave the symbol 2 out of the language.

We adopt a reading convention due to Dick de Jongh that allows us to write
fewer brackets. The precedence is such that the strongest binding symbols are
¬, 2 and 3 which all bind equally strong. Next come ∧ and ∨, followed by
� and the weakest connectives are → and ↔ . Thus, for example, A � B →
A ∧2C �B ∧2C will be short for (A�B)→

(
(A ∧2C)� (B ∧2C)

)
.

Given a sequential theory T , the logic IL(T ) is the set of modal formulas
whose so-called arithmetical interpretations are provable in T . An arithmetical
formula is an arithmetical interpretation of A if it is obtained from A by sub-
stituting propositional variables with sentences, and the operator � with the
interpretability predicate. There are multiple plausible choices for the notion
of an interpretability predicate. Unless stated otherwise, we are talking about
theorems interpretability : Int(A,B) stands for “there is a translation function
∗ such that for all C, if T +B ` C then T +A ` C∗”. Here ∗ is any translation,
a function that preserves structure up to quantifier relativisation (see e.g. [8]
for details).

Next we turn to relational semantics. The results in this paper rely on
the (ordinary or regular) Veltman semantics. The future work, and indeed the
motivation for this paper, is centred around the notion of generalised Veltman
semantics. So let us define both the regular and generalised Veltman semantics.

Definition 1.1 A generalised Veltman frame F is a structure 〈W,R, {Sw : w ∈
W}〉, where W is a non-empty set, R is a transitive and converse well-founded
binary relation on W and for all w ∈W we have:

a) Sw ⊆ R[w]× (P(R[w]) \ {∅});
b) Sw is quasi-reflexive: wRu implies uSw{u};
c) Sw is quasi-transitive: if uSwV and vSwZv for all v ∈ V , then

uSw(
⋃
v∈V Zv);

d) if wRuRv, then uSw{v};
e) monotonicity: if uSwV and V ⊆ Z ⊆ R[w], then uSwZ.

A generalised Veltman model is a quadruple M = 〈W,R, {Sw : w ∈W}, V 〉,
where the first three components form a generalised Veltman frame and where
V is a valuation mapping propositional variables to subsets of W . The forcing
relation M, w  A is defined in the expected way together with the following:

w  A�B :⇐⇒ ∀u
(
wRu & u  A⇒ ∃V (uSwV & V  B)

)
.
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We write V  B as short for (∀ v∈V ) v  B.
To save some space, we define regular Veltman semantics by stipulating

that a generalised model is an ordinary model if whenever uSwV , the set V is
a singleton (i.e. V = {v} for some v), and we exclude monotonicity.

By an ILX-frame we mean (a regular, if not stated otherwise) frame such
that no theorem of ILX can be refuted using this frame. We say that a logic
is complete w.r.t. (generalised) Veltman semantics if for any non-theorem A
there is a (generalised) Veltman model satisfying A in one of its worlds.

In [7] the logic known as ILR (IL +A�B → ¬(A�¬C)�B∧2C) was proven
to be modally complete (w.r.t. generalised semantics); and another, known as
ILW (IL + A�B → A�B ∧2¬A), was known to be modally complete much
earlier [1]. Problems occurred while trying to prove that the combination of
these two logics, ILWR, is modally complete (see [2] for the statement of the
problem and a discussion on how to overcome the problem). At the moment
we believe ILWR is modally complete if it can prove principles contained in a
certain (“W-flavoured”) series of principles. In this short paper we will only
define this series and prove that the principles contained are arithmetically
valid. We do not yet know e.g. if they are independent from other known
principles.

A major open problem in the field is to characterise IL(All), the intersection
of interpretability logics of all sequential theories T . The search for IL(All)
benefited from exploring modal semantics, in this case the so-called Veltman
semantics (e.g. [3]). This is our motivation too. For definitions and other
details concerning formalised interpretability please see the literature, e.g. [8].

The semi-formal modal logic CuL was introduced in [6]. The system is based
on a richer modal language than the language of interpretability logics: modal
operators are allowed to have a variable in their superscript. The intended
arithmetical interpretation of this variable is a definable cut. In case the cut in
question is the identity cut, we will just omit it. Various principles in IL(All)
allow for an arithmetical soundness proof using CuL. (See [6], [4], and the forth-
coming [5].) Due to size constraints, we will display some essential ingredients
of the system without further comments referring the diligent reader to [6]:

(→)J ` 2IA→ 2A
LJ1 ` 2I(A→ B)→ (2IA→ 2IB)
LJ2 ` 2IA→ 2I2JA
LJ3 ` 2I(2JA→ A)→ 2IA
JJ1 ` 2(A→ B)→ A�B
JJ5 ` 3JA�A
NecJ ` A⇒ ` 2IA
MJ Γ, (A ∧2JC �B ∧2J′

C) ` D ⇒ Γ, A�B ` D
Here J is a variable not occuring in Γ, A,B,D and J 6= J ′

Of course we also use regular principles like J2 : (A�B) ∧ (B � C)→ A� C,
J3 : (A� C) ∧ (B � C)→ A ∨B � C and J4 : A�B → (3A→ 3B).
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2 A W-flavoured series of principles

We define the series of principles (Wn)n∈ω by stating W0 := W = A � B →
A�B ∧2¬A and for n > 0:

Un := 3Cn−1 ∨ · · · ∨3C1;

V1 := A;

for n > 1 : Vn := ¬(Cn−1 �3A ∨Bn−1 ∨ Un−1 → Vn−1 �Bn−1);

for n > 0 : Wn := A�3A ∨Bn ∨ Un → Vn �Bn.
Thus, the first few principles are (W0 actually being equivalent to W1):

W1 :A�3A ∨B1 → A�B1;

W2 :A�3A ∨B2 ∨3C1 → ¬(C1 �3A ∨B1 → A�B1)�B2;

W3 :A�3A ∨B3 ∨3C2 ∨3C1 →
→ ¬(C2 �3A ∨B2 ∨3C1 → ¬(C1 �3A ∨B1 → A�B1)�B2)�B3.

We omit the proofs of the following two lemmas.

Lemma 2.1 Let n ∈ ω \ {0}. Suppose 2(A→ ∨
1≤i≤n−13K¬Ci) and Cn−1�

3A ∨Bn−1 ∨ Un−1. Then for some cut J the following holds:

Cn−1 ∧
∧

1≤i≤n−2

2J¬Ci �Bn−1

Lemma 2.2 For all cut variables K and all n ∈ ω \ {0},

` Vn �A ∧
∧

1≤i≤n−1

2K¬Ci.

Proposition 2.3 For all n ∈ ω \ {0}, `Wn, i.e.

` A�3A ∨Bn ∨ Un → Vn �Bn
Proof Suppose A�3A ∨ Bn ∨ Un. Applying the principle W, A� Bn ∨ Un.
Then there is a cut K such that

A ∧
∧

1≤i≤n−1

2K¬Ci � (Bn ∨ Un) ∧
∧

1≤i≤n−1

2¬Ci.

By unpacking Un we see that

A ∧
∧

1≤i≤n−1

2K¬Ci �Bn ∧
∧

1≤i≤n−1

2¬Ci.

In particular,

A ∧
∧

1≤i≤n−1

2K¬Ci �Bn.
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Lemma 2.2 implies

Vn �A ∧
∧

1≤i≤n−1

2K¬Ci.

Applying J2 gives Vn �Bn, as required. 2
Theorem 2.4 For n ∈ ω, the principle Wn is valid in ILWR-frames.

Proof Omitted. 2

3 Conclusion, status and future work

Let us briefly comment on the status of the new series. At the moment we
don’t have answers to the following three questions: (1) Is {Wn}n∈ω valid on
generalised ILWR-frames?; (2) do we have ILWR  Wn for all n ∈ ω?; (3) do
we have ILW{RkR

m}k,m∈ω Wn for all n ∈ ω?
If (1), we have (unpublished) modal completeness of IL{Wn}n∈ω w.r.t. gen-

eralised semantics. This is a strictly stronger system than ILW and ILR, and
so would be the strongest system yet for which we have modal completeness.
If (1) and (2), then ILWR = ILWn, and so we also have completeness of ILWR
w.r.t. generalised semantics.
If (1) and not (2) are the case, in addition we have incompleteness of ILWR.

If (1) is not the case, then {Wn}n∈ω is independent of ILWR. If (1) is
not the case and (3) is the case, with additional work we might still be able
to prove completeness of IL{Wn}n∈ω w.r.t. generalised semantics. If nei-
ther (1) or (3), we have a (strictly) better lower bound of IL(All): the logic
IL{WnRkR

m}k,m,n∈ω.
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Abstract

In this extended abstract we study Beklemishev’s combinatorial principle Every
Worm Dies, EWD from [2]. This principle arises from considering a sequence of
modal formulas, the finiteness of which is not provable in Peano Arithmetic, being
equivalent to the one-consistency of PA. We show that this theorem can be gen-
eralised in a straight-forward fashion to natural fragments of PA. Furthermore, we
comment on our progress to extending the framework to fragments of second order
arithmetic, most notably ACA.
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1 Preliminaries

The polymodal provability logic GLP has turned out a versatile logic since
special elements –the so-called worms– in there can be interpreted in many
ways: elements of a logic, words over an infinite alphabet, special fragments
of arithmetic, Turing progressions, worlds in a special model for the closed
fragment of GLP, and also ordinals. Due to these many interpretations of
worms, Beklemishev could give ([1]) an ordinal analysis of PA and related
systems. As a consequence, he could formulate a combinatorial principle about
worms that is true yet independent of PA.

In the recent paper [3], Beklemishev and Pakhomov extend the method
of ordinal analysis via provability logics to predicative systems of second or-
der arithmetic. It is important to investigate if said analysis also comes with
the expected regular side-products as classification of provably total recursive
functions, consistency proofs, and independent combinatorial principles. This
paper can be seen as some first explorations in this direction.
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Definition 1.1 For Λ an ordinal, the logic GLPΛ is the propositional modal
logic with a modality [α] for every α < Λ . Each [α] modality satisfies the GL
identities given by all tautologies, distribution axioms [α](ϕ → ψ) → ([α]ϕ →
[α]ψ), Löb’s axiom scheme [α]([α]ϕ→ ϕ)→ [α]ϕ and the rules modus ponens
and necesitation ϕ/[α]ϕ. The interaction between modalities is governed by two
schemes, monotonicity [β]ϕ→ [α]ϕ and, negative introspection 〈β〉ϕ→ [α]〈β〉ϕ
where in both schemes it is required that β < α < Λ.

The closed fragment of GLPΛ suffices for ordinal analyses and worms are
the backbone of it.

Definition 1.2 The class of worms of GLPΛ is denoted WΛ and defined by
>∈WΛ and, A∈WΛ ∧ α<Λ⇒ 〈α〉A∈WΛ. By WΛ

α we denote the set of worms
where all occurring modalities are at least α. Worms A,B∈WΛ allow order-
ings <α for any α<Λ by defining A<αB :⇔ GLPΛ`B→〈α〉A. We define
the α-head hα of A inductively: hα(>):=> and hα(〈β〉A):=> if β<α and
hα(〈β〉A):=〈β〉hα(A) otherwise. Likewise, we define the α-remainder rα of A
as rα(>):=> and, rα(〈β〉A):=〈β〉A if β<α and rα(〈β〉A):=rα(A) otherwise.
We define the head h and remainder r of 〈α〉A as h(〈α〉A):=hα(〈α〉A) and
r(〈α〉A):=rα(〈α〉A). Further, h(>):=r(>):=>.

The modalities can be linked to arithmetic by interpreting 〈n〉ϕ as the
finitely axiomatisable scheme RFNΣn(EA+ϕ∗) := {2EA+ϕ∗σ → σ | σ ∈ Σn}
where EA denotes Kalmar elementary arithmetic which is essentially induction
for bounded arithmetical formulas together with an axiom stating that the
graph of exponentiation defines a total function. The 2EA –we will often simply
also write 2– denotes the standard arithmetisation of formalised provability
and ϕ∗ denotes an interpretation of ϕ in arithmetic, mapping propositional
variables to sentences, commuting with the connectives and, translating the
〈n〉 as above. The theory EA+ is as EA now stating that superexponentiation
is a total function. Simple worms relate to arithmetic via the following.

Theorem 1.3 (Leivant, Beklemishev, Kreisel, Levy) Provably in
EA+, for n≥1 and ∗ arbitrary: IΣn≡RFNΣn(EA)≡(〈n + 1〉>)∗ and
PA≡{(〈m〉>)∗|m∈ω}.

From [1] we know that 〈Wω
n/≡, <n〉∼= 〈ε0,≺〉 so that worms (modulo prov-

able equivalence) can be used to denote ordinals. We can find analogs of fun-
damental sequences for ordinals by defining Q0

n(A):=〈n〉A; Qk+1
n (A):=〈n〉

(
A∧

Qkn(A)
)
. By an easy induction on k one sees that Qkn(A)<m〈n + 1〉A for any

m≤n and the sequence Qkn(A) approximates 〈n + 1〉A in the sense of the so-
called reduction property from 3 [1]: EA + 〈n+ 1〉A ≡Π0

n+1
EA + {Qkn(A)}k∈ω.

This is provable in EA+ so that we get the following corollary.

Theorem 1.4 (Reduction property) EA+`〈m〉〈n+1〉A↔∀k〈m〉Qkn(A)
(m≤n).

3 Since for closed formulas ϕ∗ does not depend on ∗ we will often drop the interpretation.
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The sequence Qkn(A) can be used to define decreasing ordinal sequences
by defining (〈n + 1〉A)�k�:=Qk+1

n (A). To make this stepping down also be
defined on successor ordinals we define (〈0〉A)�k�:=A. Of course we cannot
get smaller than the minimal element so that we define >�k�:=>.

The step-down function can be rewritten to get a more combinatorial flavour
reminiscent of the Hydra battle. To this end we define the chop-operator c on
worms by c(>):=>; c(〈0〉A):=A and, c(〈n + 1〉A):=〈n〉A. Now we define a
stepping down function based on a combination of chopping a word and the
worm growing back. For worms A and B we define the concatenation A?B via
>?B:=B and (〈α〉A)?B:=〈α〉(A?B).

Definition 1.5 For any number k let AJkK:=c(A) for A=> or A=0B and

AJkK:=
(
c(h(A))

)k+1
? r(A) otherwise.

From now on we often omit the ?. It is easy to prove (see [2]) that for any
A and k we have that A�k� is GLP-provably equivalent to AJkK. Given a
worm A, we now define a decreasing sequence (strictly as long as we have not
reached >) by A0 := A and Ak+1:=AkJk + 1K. We now define the principle
EWD standing for every worm dies as an arithmetisation of ∀A∃kAk=>. The
principle, although true, is not provable in PA. Actually, it turns out to be
provably equivalent to the one-consistency of PA.

2 Worm battles for IΣn

By EWDn we will refer to the principle restricted to worms of Wn, that is,
∀A∈Wn∃kAk=>. Through a simple adaptation of [1] and [2] we will prove
that EWDn+1 is equivalent to the one-consistency of IΣn for n>0. To reach
the EA-proof of EWDn+1 from 1-Con(IΣn) we shall make use of the following
rule:

Definition 2.1 By TIR(Πn, <0�WΛ) we denote the following inference rule
expressing transfinite induction along the ordering of <0 for Πn-formulas ϕ:

∀A∈WΛ
(
∀B<0A ϕ(B)→ ϕ(A)

)

∀A∈WΛ ϕ(A)
.

Then, via a conversion of the similar theorem found in [1]:

Theorem 2.2 For every n>0, EA+1- Con(IΣn) contains [EA,TIR(Π2,Wn)],
that is –the extension of EA by one application of the TIR(Π2,Wn) rule.

And since EWDn+1 is a Π2 sentence, we clearly obtain our desired result.
For independence, as in [2], we introduce an analogue of Hardy func-

tions: Let hA(m) be 4 the least k such that AJm. . .m+kK=>, where
AJm. . .m+kK:=AJmK . . . Jm+kK. Given worms A and B we define the or-
dering AEB iff A=BJ0K . . . J0K for a finite number of iterations. 5 This relation

4 Confusion with the hα and h function from Definition 1.2 is not possible due to different
types of arguments.
5 iff A is an initial segment of B apart from possibly the first element which should then be
smaller.
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gives us an easily proven, through the definitions above, monotonicity for the
hA functions:

Lemma 2.3 If hB(y) is defined, A E B∈Wω and x ≤ y then

1. ∃ k BJm. . .m+ kK=A.
2. ∀m≤y ∃ k BJn . . . n+ kK=AJmK.
3. hA(x) is defined and hA(x)≤hB(y).

Lemma 2.4 If A ∈W1 and hB(y) is defined, then h1B(n)>h
(n)
B (n).

The above are formalizable in EA. Let f↓ denote ∀x∃yf(x)=y.

Lemma 2.5 EA ` ∀A∈Wω
1 (hA1111 ↓ → 〈1〉A).

Proof. Reasoning in EA. By Löb’s theorem, we can assume that

∀A∈Wω
1 [1](hA1111 ↓ → 〈1〉A). (1)

If A1111=1B then h1B↓ → λx.h
(x)
B (x)↓. The function hB is increasing,

has an elementary graph and grows at least exponentially as by Lemma 2.4,
h111(x)>2x. So for A=> we have that h1111↓ implies the totality of 2xn and
hence EA+ which is known ([2]) to imply 〈1〉>. For A nonempty, we reason:

λx.h
(x)
B (x) ↓ → 〈1〉hB ↓, a theorem of EA([2])

→ 〈1〉 〈1〉B, by Assumption (1)

→ 〈1〉A.
If A1111=B starts with m>1, then as before hB ↓ implies EA+ and,

hB ↓ → λx.hBJxK(x+ 1) ↓
→ ∀n hBJnK ↓ by Lemma 2.3

→ ∀n hBJn+1K ↓
→ ∀n h1(BJnK) ↓ (as 1(BJnK)EBJn+ 1K)
→ ∀n λx.h(x)

BJnK(x) ↓
→ ∀n 〈1〉hBJnK ↓ (as before)

→ ∀n 〈1〉 〈1〉 (AJnK) by Assumption (1)

→ 〈1〉A (by the reduction property).

2

Now to prove the independence of the worm principle for IΣn for n>0,
assume inside EA that the principle holds. We have:

EA ` ∀A∈Wn+1 ∃m Am=> → ∀A∈Wn+1
1 hA ↓

→ ∀ k 〈1〉
(
〈n+ 1〉>JkK

)

→ 〈1〉 〈n+ 1〉> (by the reduction property)

→ 1- Con(IΣn).

We can make use of the reduction property since 〈1〉 〈n+ 1〉> → 〈1〉>, which
in turn implies EA+.
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3 Towards subsystems of second-order arithmetic

Following [3] we expand the language L of arithmetic to Lα with a sequence
of truth predicates {>β : β < α} satisfying the Uniform Tarski Biconditional
axioms of truth UTB<α. That is, the schema ∀x (ϕ(x) ↔ >β(ϕ(ẋ))) for all
β<α and ϕ∈Lβ . We will denote UTBα := UTB<α+1 and UTBL := UTB0.
Given an elementary well ordering, (Λ, <) we expand the arithmetical hi-
erarchy into the so-called hyperarithmetical hierarchy up to ω(1 + Λ). Let
Πω(1+α)+n :=ΠLαn+1(>α), and Π<λ :=

⋃
α<λ Πα for limit λ. This allows us to

expand reflection principles to the hyperarithmetical hierarchy. To expand the
reduction property towards limit ordinals, we can use the following theorem
from [3].

Theorem 3.1 Let λ = ω(1 + α) and S provably contain EA + UTBα. Over
EA + UTB, we have RFNΠλ(S) ≡Π<λ RFNΠ<λ(S).

This can lead us with some candidates to choose for the nth entry in the fun-
damental sequence for 〈λ〉A worms with λ a limit ordinal. It also helps in satis-
fying the requirements to express some theories of second-order arithmetic as a
chain of reflection principles. So for instance by [3] if we let S := EA+ +UTBL
then ACA is mutually interpretable with PA(>) := S + RFNΠ<ω2

(S) ≡Π<ω2

S + RFNΠω2(S). With this, proving EWDω2 from 1-Con(PA(>)) can follow
the steps of the existing proof in [2].

Difficulties are met in proving its independence. Specifically in providing a
sufficient monotonicity with a corresponding of Lemma 2.3. The demands for
which, are dictated by Lemma 2.5 with the following implications:

λx.hBJxK(x+ 1) ↓ → ∀n hBJnK ↓,
∀n hBJn+1K ↓ → ∀n h1BJnK ↓ .

A restriction to the ordering relation in accordance to the demands of Lemma
2.3 appears to clear the path for ACA and perhaps second-order theories of
comparable strength. As such, this paper reports on work in progress that
shall be published at some point in [4].
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Abstract

This paper is devoted to the development of cut-free hypersequent calculi for the
modifications of S5 having non-standard modalities: contingency, non-contingency,
essence, and accident operators. As a basis for our calculi, we take Restall’s cut-free
hypersequent calculus for S5. We modify its rules for the aforementioned modalities.
We show that all axioms and rules of Hilbert-style axiomatizations of the logics in
question are provable in our hypersequent calculi. We establish soundness, complete-
ness and cut elimination theorems for the hypersequent calculi.

Keywords: modal logic, non-contingency logic, essence logic, accident logic,
hypersequent calculus, cut elimination.

1 Introduction

Sequent and hypersequent calculi for modal logics are a fruitful and well-
developed area of research. Most of standard modal logics have already had
cut-free sequent or hypersequent calculi. The modal logic S5 is especially sig-
nificant in this sense. Although there is no a cut-free standard sequent calculus
for it, there are at least eight different cut-free hypersequent calculi and several
cut-free non-standard sequent calculi for it (see [1,6] for more details). But
in the case of non-standard modalities (contingency, non-contingency, essence,
and accidence) the situation is worse. We know only Zolin’s papers [12,11]
which contain non-cut-free sequent calculi for some non-contingency logics (in
particular, for the non-contingency version of S5). Since there are a plenty
of cut-free calculi for S5, we believe that this logic is an appropriate starting
point for the development of cut-free hypersequent calculi for the modal logics
having non-standard modalities. Hereafter we use Restall’s [9] hypersequent
calculus for S5, since it is one of the simplest calculi for it.

Let us say a few words about the history of the study of non-standard
modalities. Although the philosophical discussion about contingency and non-

1 The research presented in this paper is supported by the grant from the National Science
Centre, Poland, grant number DEC-2017/25/B/HS1/01268.
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contingency goes back centuries, the formal presentation of contingency and
non-contingency logics is due to Montgomery and Routley [7,8]. In partic-
ular, they present several axiomatizations for S5-style contingency and non-
contingency logics. Essence logics were developed by Fine [3,4]. The essence
modality means that “the proposition A is essentially true”, i.e. “if A is true,
then it is necessarily true”. The formal treatment of the accident modality
was done by Small [10] in the context of Gödel’s ontological argument. This
modality means that “although A is true, it is not necessarily true”.

The structure of the paper is as follows. In Section 2, we describe the
semantics and axiom systems for S5 and its modifications with non-standard
modalities. Section 3 is devoted to the presentation of hypersequent calculi for
the logics in question and the discussion of their meta-theoretical properties.

2 Semantics and axiom systems

Let us fix a modal language L�, where � is an unary operation from
the set {2,♦,B,I, ◦, •} (these symbols stand for necessity, possibility, non-
contingency, contingency, essence, and accident operators, respectively), with
the alphabet 〈P,�,¬,∨,∧,→, (, )〉, where P is the set {p, q, r, p1, . . .} of propo-
sitional variables. The set F� of all L�-formulas is defined in a standard
inductive way. We write L�~, where � and ~ are unary operations from the
set {2,♦,B,I, ◦, •} such that � 6= ~, for a bimodal language with both �
and ~ in its alphabet. Analogously, we write F�~ for the set of all formulas
of this bimodal language.

The logic S5 can be built in three languages: L2, L♦, and L2♦. We
consider the latter variant. A pair 〈W,V 〉 is an S5-model, if W 6= ∅ and V is
a mapping from W × F2♦ to {1, 0} such that it preserves classical conditions
for truth-functional connectives and for any A ∈ F2♦ and x ∈W we have:

• V (2A, x) = 1 iff ∀y∈WV (A, y) = 1,

• V (♦A, x) = 1 iff ∃y∈WV (A, y) = 1.

The axiom system for S5 has all classical axioms, modus ponens, substitu-
tion rule, Gödel’s rule (if ` A, then ` 2A), and the subsequent modal axioms:

(1) 2(p→ q)→ (2p→ 2q),
(2) 2p→ p,

(3) ♦p→ 2♦p,
(4) ♦p↔ ¬2¬p.

A semantic condition for the non-contingency operator B is as follows:

• V (BA, x) = 1 iff ∀y∈WV (A, y) = 1 or ∀y∈WV (A, y) = 0.

Following Montgomery and Routley [7] and Zolin [11], by the non-
contingency version of S5 we mean the logic S5B which is the smallest set
closed under modus ponens, substitution rule, Gödel’s rule for B (if ` A, then
` BA) and contaning all classical axioms as well as the subsequent modal ones:
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(1) p→
(
B(p→ q)→ (Bp→ Bq)

)
,

(2) Bp↔ B¬p,
(3) BBp.

A semantic condition for the contingency operator is presented below:

• V (IA, x) = 1 iff ∃y∈WV (A, y) = 1 and ∃y∈WV (A, y) = 0.

Let us present one of Montgomery and Routley’s [7] axiom systems for S5I.
It is obtained from the one for S5B by changing B to ¬I in Gödel’s rule and
replacement of the axioms for B with the following ones:

(1) p→
(
¬I(p→ q)→ (Iq → Ip)

)
,

(2) Ip↔ I¬p,
(3) ¬IIp.

A semantic condition for the essence operator is as follows:

• V (◦A, x) = 1 iff V (A, x) = 0 or ∀y∈WV (A, y) = 1.

Axiomatization of S5◦ was developed by Fan [2] and it has all classical
axioms, modus ponens, substitution rule, and the following modal axioms and
inference rule:

(1) ◦>,
(2) ¬p→ ◦p,
(3) (◦p ∧ ◦q)→ ◦(p ∧ q),

(4) p→ ◦(◦¬p→ p),
(5) ¬◦¬p→ ◦(◦¬p→ p),
(6) if ` A→ B, then ` (A∧◦A)→ B.

A semantic condition for the accident operator is as follows:

• V (•A, x) = 1 iff V (A, x) = 1 and ∃y∈WV (A, y) = 0.

Axiomatization of S5• can be obtained from Fan’s axiomatization of S5◦

due to equations •A = ¬◦A and ◦A = ¬•A. It has all classical axioms, modus
ponens, substitution rule, and the following modal axioms and inference rule:

(1) ¬•>,
(2) •p→ p,
(3) •(p ∧ q)→ (•p ∨ •q),

(4) •(¬p→ •¬p)→ ¬p,
(5) •(¬p→ •¬p)→ ¬•¬p,
(6) ` A→ B yields ` (A∧¬•A)→ B.

3 Hypersequent calculi

If Γ and ∆ are finite multisets of formulas (of one of the languages considered
in the paper), then we say that an ordered pair written as Γ⇒ ∆ is a sequent.
By a hypersequent we mean a multiset of sequents written as Γ1 ⇒ ∆1 |
. . . | Γn ⇒ ∆n. A sequent Γ ⇒ ∆ is valid in an S5-model 〈W,V 〉 iff for any
x ∈ W it holds that V (A, x) = 1 (for any A ∈ Γ) implies V (B, x) = 1 (for
some B ∈ ∆). A hypersequent is valid in an S5-model iff at least of one its
components is valid in the same model. The notion of a proof a hypersequent
calculus are understood in the standard way. If a hypersequent H is provable
in a hypersequent calculus, we write `hs H (while ` we use for provability in
axiom systems).
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Let us introduce Restall’s hypersequent calculus for S5 [9]. The only axiom
is as follows: (Ax) A⇒ A. The structural rules are as follows:

(EW⇒)
H

A⇒ | H (⇒EW)
H

⇒ A | H

(IC⇒)
A,A,Γ⇒ ∆ | H
A,Γ⇒ ∆ | H (⇒IC)

Γ⇒ ∆, A,A | H
Γ⇒ ∆, A | H

(Merge)
Γ⇒ ∆ | Π⇒ Σ | H

Γ,Π⇒ ∆,Σ | H (Cut)
Γ⇒ ∆, A | H A,Π⇒ Σ | G

Γ,Π⇒ ∆,Σ | H | G
It’s easy to observe that internal weaking rules as well as external contrac-

tion rules are derivable. Propositional logical rules are as follows:

(¬ ⇒)
Γ⇒ ∆, A | H
¬A,Γ⇒ ∆ | H (⇒ ¬)

A,Γ⇒ ∆ | H
Γ⇒ ∆,¬A | H

(∨ ⇒)
A,Γ⇒ ∆ | H B,Γ⇒ ∆ | G

A ∨B,Γ⇒ ∆ | H | G (⇒ ∨)
Γ⇒ ∆, A,B | H

Γ⇒ ∆, A ∨B | H

(∧ ⇒)
A,B,Γ⇒ ∆ | H
A ∧B,Γ⇒ ∆ | H (⇒ ∧)

Γ⇒ ∆, A | H Γ⇒ ∆, B | G
Γ⇒ ∆, A ∧B | H | G

(→⇒)
Γ⇒ ∆, A | H B,Π⇒ Σ | G
A→ B,Γ,Π⇒ ∆,Σ | H | G (⇒→)

A,Γ⇒ ∆, B | H
Γ⇒ ∆, A→ B | H

Modal logical rules are given below.

(2⇒)
A,Γ⇒ ∆ | H

2A⇒ | Γ⇒ ∆ | H (⇒ 2)
⇒ A | H
⇒ 2A | H

Although Restall himself did not consider the rules for ♦, they were sug-
gested for his calculus in [5]:

(♦ ⇒)
A⇒ | H
♦A⇒ | H (⇒ ♦)

Γ⇒ ∆, A | H
Γ⇒ ∆ | ⇒ ♦A | H

The rules for non-standard modalities are given below.

(B⇒)
A,Γ⇒ ∆ | H Π⇒ Σ, A | G
BA⇒ | Γ⇒ ∆ | Π⇒ Σ | H | G (⇒ B)

⇒ A | A⇒ | H
⇒ BA | H

(I⇒)
⇒ A | A⇒ | H

IA⇒ | H (⇒ I)
A,Γ⇒ ∆ | H Π⇒ Σ, A | G
⇒ IA | Γ⇒ ∆ | Π⇒ Σ | H | G

(◦ ⇒)
A,Γ⇒ ∆ | H Π⇒ Σ, A | G
◦A,Π⇒ Σ | Γ⇒ ∆ | H | G (⇒ ◦) ⇒ A | A,Γ⇒ ∆ | H

Γ⇒ ∆, ◦A | H

(• ⇒)
⇒ A | A,Γ⇒ ∆ | H
•A,Γ⇒ ∆ | H (⇒ •) A,Γ⇒ ∆ | H Π⇒ Σ, A | G

Π⇒ Σ, •A | Γ⇒ ∆ | H | G
Let � ∈ {B,I, ◦, •}. A hypersequent calculus for the logic S5� is obtained

from Restall’s one for S5 by the replacement of the rules for 2 and ♦ with the
rules for �.

Theorem 3.1 (Soundness) Let � ∈ {B,I, ◦, •}. For every L�-formula A,
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it holds that S5� `hs A implies S5� |= A.

Theorem 3.2 (Equivalence) Let � ∈ {B,I, ◦, •}. For every L�-formula A,
it holds that S5� ` A implies S5� `hs A.

As a consequence of Theorem 3.2 and the completeness of axiomatic sys-
tems for the logics in question, we obtain the the completeness result for our
hypersequent calculi.

Theorem 3.3 (Completeness) Let � ∈ {B,I, ◦, •}. For every L�-formula
A, it holds that S5� |= A implies S5� `hs A.
Theorem 3.4 (Cut elimination) Let � ∈ {B,I, ◦, •}. The rule (Cut) is
eliminable in S5�.
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Abstract

We introduce an algebraic semantics for propositional inquisitive and dependence
logic based on intuitionistic logic, introduced in [5] via team-semantics. We prove the
equivalence of the two semantics by proving a duality result between the category fi-
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algebras.
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1 Introduction

In this work we introduce an algebraic semantics for propositional inquisitive
and dependence logic based on intuitionistic logic, and we show some possible
applications of this novel semantic framework.

Dependence logic was introduced by Väänänen [14] as an extension of first-
order logic with dependence atoms. In its standard formulation, dependence
logic is defined via team semantics, originally introduced by Hodges in [8],
which generalizes standard Tarski’s semantics by teams, namely set of assign-
ments which map first-order variables to elements of the domain. In its propo-
sitional version, a team is a set of valuations mapping propositional atoms to
either 1 or 0. Propositional dependence logic has been studied in [15], while [16]
considers several extensions of classical logic using team semantics. Intuitively,
the dependence atom =(p, q) expresses the fact that the value of the variable q
is uniquely determined by the values of the variables p. The constancy atom
=(p) can then be seen as a special case of the dependency atom, saying that
the value of a variable is constant in the underlying team.

On the other hand, inquisitive logic was formally developed by Ciardelli,
Groenendijk and Roelofsen in a series of articles, most notably in [4,6], where

1 I would like to thank Fan Yang for comments and discussions on this work. Also, I am
very thankful to an anonymous referee for pointing me to related works in the literature.
This research was supported by Research Funds of the University of Helsinki.
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they introduced the so-called “support semantics”. Differently from depen-
dence logic, inquisitive logic was developed hand-in-hand with inquisitive se-
mantics – a linguistic framework that aims at providing a uniform formal char-
acterisation of both questions and statements in natural languages. In partic-
ular, polar questions expressing “whether p holds or not” are represented by
an operator ?p defined using the inquisitive disjunction as ?p := p

> ¬p
It is known that inquisitive and dependence logic are closely related [3,15].

They are both extensions classical logic that adopt team semantics and they
are also expressively equivalent as they are both complete w.r.t. all downward
closed team properties. In [5] Ciardelli, Iemhoff and Yang have built on this
similarity to introduce InqI – a version of inquisitive logic which is based on
intuitionistic, rather than classical logic and which can be easily provided with
a dependency operator.

In this work we we introduce an algebraic semantics for InqI based on the
previous work on algebraic semantics of inquisitive logic [7,12,2]. Interestingly,
similar work on intuitionistic inquisitive logic is currently being developed by
Holliday [9] and Punčochář [11].

2 Team Semantics of InqI

We define the set LInqI of formulas of InqI inductively as:

φ ::= p | ⊥ | =(p) | φ ∧ φ | φ ∨ φ | φ→ φ | φ > φ;

where p ∈ AT is an arbitrary atomic formula. Negation is defined as ¬φ :=
φ → ⊥ and the dependency atom can be defined from the constancy atom
as =(p, q) := (

∧
i≤n =(pi)) → =(q). If a formula α is defined in the restricted

signature {⊥,∧,→,∨}, then we say that φ is standard. We use greek letters
α, β, γ... to denote standard formulas.

The semantics of InqI is a version of team semantics over intuitionistic
Kripke models. Fist, recall that an intuitionistic Kripke frame is a partial
order F = (W,R). An intuitionistic Kripke model is a pair M = (F, V ), where
F is an intuitionistic Kripke frame and V : AT→ Up(W ) a valuation of atomic
formulas over upsets of F. Notice that a world w in a model can be viewed as
an assignment w : AT→ 2 – hence we write w(p) = 1 if and only if p ∈ V (w).

Definition 2.1 Let M = (W,R, V ) be an intuitionistic Kripke model. A team
is a subset t ⊆W . A team s is an extension of a team t if s ⊆ R[t].

A team can thus be considered as a set of assignments. The team semantics of
InqI is defined as follow.

Definition 2.2 Let M = (W,R, V ) be an intuitionistic Kripke model. The
notion of a formula φ ∈ LInqI being true on a team t ⊆W is defined as follows:

M, t � p ⇐⇒ ∀w ∈ t (w(p) = 1)

M, t � ⊥ ⇐⇒ t = ∅
M, t � =(p) ⇐⇒ ∀w, v ∈ t (w(p) = v(p))
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M, t � ψ ∧ χ ⇐⇒ M, t � ψ and M, t � χ
M, t � ψ ∨ χ ⇐⇒ ∃s, r ⊆ t such that s ∪ r = t,M, s � ψ and M, r � χ
M, t � ψ → χ ⇐⇒ ∀s (if s ⊆ R[t] and M, s � ψ then M, s � χ)

M, t � ψ > χ ⇐⇒ M, t � ψ or M, t � χ.

We then write M � φ if M, t � φ for all t ⊆ W and F � φ if (F, V ) � φ for all
valuations V . The logic InqI is then defined as follow:

InqI := {φ ∈ LInqI : F � φ where F is any intuitionistic Kripke frame}

We recall some important properties of such semantics [5, Prop. 3.15]. Recall
that a formula φ is flat (or truthconditional) if for any model M and team t,
we have that M, t � φ⇐⇒M, w � φ for all w ∈ t.
Proposition 2.3

• Persistency: if M, t � φ and s ⊆ R[t], then M, s � φ.

• Empty Team Property: M, ∅ � φ, for all φ ∈ LInqI.

• φ is flat if and only if there is a standard formula α such that φ ≡ α.

Finally, let us notice what are the inquisitive and the dependency features
of the logic defined above. Inquisitive logic is usually introduced over the sig-
nature {⊥,∧, > ,→}, while the constancy atom comes from dependence logic.
However, it is easy to check that =(p) ≡ p

> ¬p, so one could also decide not
to take =(·) as a primitive symbol. On the other hand, note that the “intu-
itionistic” disjunction ∨ is not that given by the intuitionistic core logic, as we
allow it to occur also in non-standard formulas. In fact, it is obtained by lift-
ing the intuitionistic disjunction of standard formulas to the entire logic. This
is known as teamification [10] in team-based logics. We believe the algebraic
semantics of the next sections shall give new light to this phenomenon.

3 Algebraic Semantics for InqI

We shall now develop an alternative algebraic semantics for the system InqI

defined in the previous section.

Definition 3.1 [Intuitionistic Inquisitive Algebra] An intuitionistic inquisitive
algebra (or InqI-algebra) H is a tuple (H,

>

,∨,∧,→, 0, H0), where:

• (H,

>

,∧,→, 0) and (H0,∨,∧,→, 0) are Heyting algebras;

• H0 = {α ∈ H : ∀x, y[α→ (x

>

y) = (α→ x)

>

(α→ y)]};
• For all x, y, z ∈ H, the following equality hold:

(∗) x ∨ (y

>

z) = (x ∨ y)

>

(x ∨ z).

And we then define the constancy atom as a partial operation =(p) := p

> ¬p.
Clearly (H0,∨,∧,→, 0) is a subalgebra of (H,

>

,∧,→, 0) w.r.t. the reduct
{∧,→, 0}. We often refer to the algebra H0 as the core of the algebra H. Since
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negation is defined as ¬x := x → 0, these two algebras also agree on their
negation. A homomorphism between intuitionistic inquisitive algebras is any
map h : H → H ′ such that h(x � y) = h(x) � h(y) for � ∈ {∧, > ,∨,→,∨, 0}.
In general, if H is a Heyting algebra and K ⊆ H, then we denote by 〈K〉 the
subalgebra of H generated by K. An InqI-algebra H is called core-generated
if H = 〈H0〉.
Definition 3.2 An intuitionistic inquisitive algebraic model is a pair M =
(H,µ) such that H is a InqI-algebra and µ : AT→ H0 a core valuation, i.e. µ
assigns atomic formulas in AT to elements in the core H0.

The interpretation of an arbitrary formula φ ∈ LInqI in an algebraic model
M = (H,µ) is then defined as follows.

Definition 3.3 Given an intuitionistic inquisitive algebraic model M and a
formula φ ∈ LInqI, its interpretation JφKM is defined as follows:

JpKM = µ(p) J⊥KM = 0

Jφ ∧ ψKM = JφKM ∧ JψKM Jφ ∨ ψKM = JψKM ∨ JχKM

Jφ→ ψKM = JφKM → JψKM Jφ > ψKM = JφKM > JψKM

We write M �0 φ if JφKM = 1. We say that φ is valid in H and write H �0 φ
if φ is true in every model M = (H,µ) over H. Finally, we say that φ is an
algebraic validity of InqI if it is true in all intuitionistic inquisitive models.

Proposition 3.4 (Normal Form) Let H be a intuitionistic inquisitive alge-

bra and x ∈ 〈H0〉, then x =

>

i≤n ai, for some a0, ...an ∈ H0.

Theorem 3.5 Let φ ∈ LInqI, then H 20 φ entails 〈H0〉 20 φ.

Finally, we can prove a characterisation of core-generated, well-connected
InqI-algebras. Recall that, if H is a Heyting algebra, H is well-connected if
x∨y = 1 entails thay x = 1 or y = 1. Also, recall that x ∈ H is join irreducible
if x = y ∨ z entails that x = y or x = z.

Theorem 3.6 Suppose H is a finite, core-generated and well-connected Heyt-
ing algebra, then α ∈ H0 if and only if α is join-irreducible.

4 Equivalence of Team and Algebraic Semantics

To prove the equivalence of team and algebraic semantics we shall first prove
a categorical equivalence relating Kripke frames and intuitionistic inquisitive
algebras. Let FinKF be the category of finite intuitionistic Kripke frames and
p-morphisms and FIIA the category of finite, well-connected, core-generated,
InqI-algebras and InqI-homomorphisms.

We sketch the proof of the equivalence FinKF ∼= FIIA. First, we describe
how, given a intuitionistic Kripke frame, we can obtain a finite, core-generated
intuitionistic inquisitive algebra:

F Up(F) Dw+(Up(F))
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Given an intuitionistic Kripke frame F = (W,R), we first consider the algebra of
its R-upsets (Up(F),∪,∩, ∅). Since this is clearly a bounded distributive lattice,
it is a Heyting algebra as well. Then, for the same argument, Dw+(Up(F)),
the set of all nonempty downsets of Up(F) ordered by the subset relation ⊆
also forms a Heyting algebra. Notice that upsets are taken with respect to the
relation R of the Kripke frame F, while downsets are here downward closed
subsets over the algebra (Up(F),∪,∩, ∅). Now, let F,G be two functors F :
FinKF → FIIA, G : FIIA → FinKF such that F : F 7→ Dw+(Up(F)) and
G : H 7→ PF(H). Together with a result from Raney [13] – which allows us
to represent Heyting algebras generated by their join-irreducible elements as
algebras of downsets of such elements – it follows by Esakia duality that F and
G describe an equivalence of categories, namely FinKF ∼= FIIA.

Now, suppose M = (F, V ) is a finite Kripke frame and let HF be F (F). To
obtain an intuitionistic inquisitive model corresponding to M , define the core
valuation µ(p) = ℘(V (p)). One can then prove the following theorem.

Proposition 4.1 Let M = (F, V ) be a finite Kripke frame and M = (HF, µ),
then M � φ if and only if M �0 φ.

Finally, we obtain as a result the algebraic completeness of the logic InqI.

Theorem 4.2 (Equivalence of Team and Algebraic Semantics) For
any φ ∈ LInqI, φ is valid in all intuitionitic Kripke frames if and only if it is
valid in all intuitionistic inquisitive algebras.

5 Relation to Existing Works and Generalisations

In [11], Punčochář has introduced an algebraic semantics for intuitionistic in-
quisitive logic which is very similar to the one considered in this article. In
particular, inquisitive Heyting algebras are introduced as algebras of antichains
over bounded implicative meet semilattice. However, there are two important
points worth stressing. Firstly, we have included two disjunctions in our sig-
nature, the tensor disjunction and the inquisitive disjunction. One can also
“forget” the tensor disjunction and require (H0,∧,→, 0) to be a bounded im-
plicative meet semilattice. It is then clear how our approach turns out to be
complementary to that of [11]. In particular, we expect the class of inquisitive
algebras defined in [11] to result as a class of representatives for our correspond-
ing class defined in more equational terms.

Secondly, an important aspect of such algebraic semantics, is that it allows
us to consider some natural generalisations of this logic. In particular, it is
very natural to consider intuitionistic inquisitive algebras whose core is the
algebra of some intermediate logic. We then say that H is an L-inquisitive
algebra if H �0 L, where L is any intermediate logic in the standard signature
{>,⊥,∧,∨,→}. Clearly, if H �0 CPC, we then have that H0 is a Boolean
Algebra, so H is a model of InqB and it indeed coincides with the algebraic
semantics for standard inquisitive logic considered in [1,12,2].

Finally, a further direction is to develop an algebraic semantics for modal
inquisitive and dependence logic. This aspect is particularly interesting as it
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relates to the translations between intuitionistic and modal inquisitive logic
described in [5]. It is an interesting open problem to characterise in algebraic
terms the translations between intermediate and modal inquisitive and depen-
dence logics.
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Abstract

In this paper, we investigate logic of bounded distributive residuated lattices with
modal operators 2 and 3. We introduce relational semantics for such substructural
modal logics. We prove that any canonical logic is Kripke complete using discrete
duality and canonical extensions. See this preprint [7] to have more details.
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1 Introduction

Substructural logic is logic lacking some of the well-known structural rules such
as contraction, weakening, or exchange. Algebraically, substructural logics rep-
resent ordered residuated algebras [6]. In this talk, we consider the distributive
version of the full Lambek calculus extended with normal modal operators 2

and 3. We introduce ternary Kripke frames, relational structures for the dis-
tributive Lambek calculus extended with binary modal relations. We establish
a discrete duality between such Kripke frames and perfect distributive resid-
uated modal algebras developing an approach proposed in [5]. We examine
canonical extensions for those algebras applying techniques provided in [2] [4]
to show that any canonical substructural distributive modal logic is Kripke
complete.

2 The distributive Lambek calculus with modal
operators

We introduce the distributive full Lambek calculus enriched with modal oper-
ators. We represent such logics with pairs that have the form ϕ ` ψ. ϕ and
ψ are formulas generated by the grammar of the full Lambek calculus with 2

and 3.

1 The research is supported by the Presidential Council, research grant MK-430.2019.1.
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Definition 2.1 A substructural normal distributive modal logic is a set of
pairs Λ including the following axioms and inference rules:

• ⊥ ` p, p ` >
• p ` p
• pi ` p1 ∨ p2, i = 1, 2

• p1 ∧ p2 ` pi, i = 1, 2

• p ∧ (q ∨ r) ` (p ∧ q) ∨ (p ∧ r)
• (p • q) • r a` p • (q • r)
• From ϕ ` ψ and ψ ` θ infer ϕ ` θ
• From ϕ ` ψ and θ ` ψ infer
ϕ ∨ θ ` ψ

• From ϕ • θ ` ψ infer θ ` ϕ \ ψ and
vice versa

• From ϕ ` ψ infer 2ϕ ` 2ψ

• p • 1 a` 1 • p a` p
• 3(p ∨ q) ` 3p ∨3q

• 3⊥ ` ⊥
• 2p ∧2q ` 2(p ∧ q)
• > ` 2>
• 2p •2q ` 2(p • q)
• From ϕ(p) ` ψ(p) infer

ϕ[p := γ] ` ψ[p := γ]

• From ϕ ` ψ and ϕ ` θ infer ϕ ` ψ∧θ
• From θ ` ϕ \ ψ infer ϕ • θ ` ψ and

vice versa

• From ϕ ` ψ infer 3ϕ ` 3ψ

Substructural normal distributive modal logic extends distributive normal
modal logic (see [5]) with residuals, product, and the axiom connecting 2 and •.
We define a ternary Kripke frame with the additional binary modal relations.
Product and residuals have the ternary semantics as in, e.g., [1].

Definition 2.2 A modal ternary Kripke frame is a structure F = 〈W,≤
, R,R2, R3,O〉, where 〈W,≤, 〉 is a partial order, R is a ternary relation
on W , R2, R3 are binary relations on W , and O ⊆ W such that for all
∀u, v, w, u′, v′, w′ ∈W :

(i) Ruvw & wR2w
′ ⇒ ∃x, y ∈W Rxyw′ & uR2x& vR2y.

(ii) ∃x ∈W (Ruwx&Rxu′v′)⇔ ∃y ∈W (Rwu′y &Ruyv′).

(iii) Ruvw & u′ ≤ u ⇒ Ru′vw, Ruvw & v′ ≤ v ⇒ Ruv′w, Ruvw & w ≤ w′ ⇒
Ruvw′.

(iv) ∀o ∈ O Rvow ⇔ Rovw, v ≤ w ⇔ ∃o ∈ ORvow, and O is upwardly closed.

(v) u ≤ v & vR2w ⇒ uR2w and u ≤ v & uR3w ⇒ vR3w.

Definition 2.3 Let F = 〈W,≤, R,R2, R3,O〉 be a modal ternary Kripke
frame, a Kripke model is a pair M = 〈F , ϑ〉, where ϑ : PV→ Up(W,≤).

(i) M, w |= p⇔ w ∈ ϑ(p).

(ii) M, w |= >; M, w 6|= ⊥; M, w |= 1⇔ w ∈ O.

(iii) M, w |= ϕ • ψ ⇔ ∃u, v ∈W Ruvw &M, u |= ϕ&M, v |= ψ.

(iv) M, w |= ϕ \ ψ ⇔ ∀u, v ∈W Ruwv &M, u |= ϕ implies M, v |= ψ.

(v) M, w |= ψ/ϕ⇔ ∀u, v ∈W Ruwv &M, u |= ϕ implies M, v |= ψ.

(vi) M, w |= ϕ ∧ ψ ⇔M, w |= ϕ&M, w |= ψ.

(vii) M, w |= ϕ ∨ ψ ⇔M, w |= ϕ orM, w |= ψ.



Rogozin 83

(viii) M, w |= 2ϕ⇔ ∀v ∈ R2(w) M, v |= ϕ.

(ix) M, w |= 3ϕ⇔ ∃v ∈ R3(w) M, v |= ϕ.

(x) M, w |= ϕ ` ψ ⇔M, w |= ϕ⇒M, w |= ψ.

Let F be a modal ternary Kripke frame and ϕ ` ψ a pair of formulas, F |=
ϕ ` ψ iff for each valuation ϑ 〈F , ϑ〉 |= ϕ ` ψ. Log(F) = {ϕ ` ψ | F |= ϕ ` ψ}.
Let F be a class of modal ternary Kripke frames, then Log(F) = ∩F∈F Log(F).
Let Λ be a substructural normal modal logic, Frames(L) = {F|F |= L} and L is
complete iff L = Log(Frames(L)). By LK, we mean the minimal substructural
distributive normal modal logic, the smallest set of pairs including the axioms
above and is closed under the required inference rules.

Theorem 2.4 Let F be a class of modal ternary Kripke frames, then Log(F)
is a substructural distributive normal modal logic.

3 Residuated distributive modal algerbas

In this section, we study algebraic semantics and canonical extensions for sub-
structural distributive modal logic.

Definition 3.1 A residuated lattice is an algebra R = 〈L, ·, \, /, ε〉, where
L is a bounded lattice, · is a binary associative monotone operation, ε is a
multiplicative identity, and the following equivalences hold for all a, b, c ∈ L:

b ≤ a \ c⇔ a · b ≤ c⇔ a ≤ c/b
Definition 3.2 Let R be a bounded distributive residuated lattice, a residu-
ated distributive modal algebra (RDMA) is an algebra M = 〈R,2,3〉 such
that 2 preserves finite suprema, 3 preserves finite infima, and for each a, b ∈ R
one has 2a ·2b ≤ 2(a · b).
Definition 3.3 Let Λ be a substructural normal modal logic, VΛ is a variety
of RDMAs defined by the set of inequations {ϕ ≤ ψ | Λ ` ϕ ` ψ}.
Theorem 3.4 Let Λ be a substructural normal modal logic, then there exists
an RDMA RΛ such that ϕ ` ψ ∈ Λ iff RΛ |= ϕ ≤ ψ.

We define a completely distributive residuated perfect lattice as a distribu-
tive version of a residuated perfect one defined in [2].

Definition 3.5 A distributive residuated lattice L = 〈L,∨,∧, ·, \, /, ε〉 is
called perfect distributive residuated lattice, if:

• Its lattice reduct is completely distributive.

• ·, \, and / are binary operations on L such that / and \ right and left
residuals of ·, repsectively; · is a complete operator on L, and / : L×Lδ → L,
\ : Lδ × L → L are complete dual operators, where Lδ is the dual of L.

We formulate canonical extensions for bounded distributive lattices with
a residuated family in the fashion of [3]. We piggyback canonical extensions
for bounded distributive lattice expansions. We refer to this paper [4] and
omit the abstract definitions. We only recall that a canonical extension (a
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dense and compact completion) of a bounded distributive lattice is completely
distributive.

Lemma 3.6 Let L = 〈L, ·, \, /, ε〉 be a bounded distributive residuated lattice,
then Lσ = 〈Lσ, ·σ, \π, /π, ε〉 is a perfect distributive residuated lattice.

We just define ·σ, \π, and /π explicitly instead of providing a proof that
mostly repeats a construction from the paper by Gehrke [3].

Let a, a′ be filter elements of Lσ and b an ideal one:

(i) a \π b =
∨{x \ y | a ≤ x ∈ L 3 y ≤ b} and similarly for the right residual.

(ii) a ·σ a′ =
∧{x · x′ | a ≤ x ∈ L& a ≤ x′ ∈ L}.

Let a, b ∈ Lσ, then.

(i) a ·σ b =
∨{x ·σ y | a ≥ x& b ≥ y}, where x, y are filter elements

(ii) a \π b =
∧{x \π y | a ≥ x& b ≤ y}, where x is a filter element and y is an

ideal one. The b/πa case is similar to the current one.

We concretise the construction establishing the discrete duality between
perfect residuated lattices and perfect posets with ternary relation (see [2]) in
a distributive setting.

Let L be a perfect distributive residuated lattice. We define a relation R
on completely join-irreducible elements as Rabc ⇔ a · b ≤ c and put O =↑ ε,
where ε is a multiplicative identity. The structure L+ = 〈J∞(L),≤, R,O〉 is
the dual ternary Kripke frame of a perfect distributive residuated lattice L.

Let 〈W,≤〉 be a poset and R ⊆ W 3, O with the conditions (ii)-(vi) from
Definition 2.2. Let us define the operations on Up(W,≤) as follows:

• A \B = {w ∈W | ∀u, v ∈W Ruwv & u ∈ A⇒ v ∈ B}
• B/A = {w ∈W | ∀u, v ∈W Rwuv v ∈ A⇒ v ∈ B}
• A ·B = {w ∈W | ∃u, v ∈W Ruvw & u ∈ A& v ∈ B}

Let us call such a poset with a relation a ternary Kripke frame.

Theorem 3.7

(i) Let R be a perfect distributive residuated lattice, then R ∼= (R+)+.

(ii) Let F be a ternary Kripke frame, then F ∼= (F+)+.

Definition 3.8 Let L be a perfect distributive residuated lattice and 2,3
unary operators on L, then M = 〈L,2,3〉 is called a perfect distributive
residuated modal algebra, if 2 is completely multiplicative, 3 is completely
additive, and for each a, b ∈ L the inequation 2a ·2b ≤ 2(a · b) holds.

Lemma 3.9 Let R be a distributive residuated lattice and M = 〈R,2,3〉 an
RDMA, then Mσ = 〈Rσ,2σ,3σ〉 is a perfect DRMA. That is, the variety of
all RDMAs is canonical.

Proof. Let a, b be filter elements. Note that 2σa ·σ2σb =
∧{2x ·2y |a ≤ x ∈

M, b ≤ y ∈ M} that follows from the definition of a filter element, the fact
that 2σ preserves all infima and ·σ is an order-preserving operation. One has:
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2σa ·σ 2σb =∧{2x ·2y | a ≤ x ∈ L,≤ x ∈ L} ≤ ∧{2(x · y) | a ≤ x ∈ L& b ≤ x ∈ L} =∧
2σ{(x · y) | a ≤ x ∈ L& b ≤ x ∈ L} =

2σ
∧{(x · y) | a ≤ x ∈ L& b ≤ x ∈ L} = 2σ(a ·σ b)

Let a, b ∈ Lσ, then
2σa ·σ 2b =

∨{2σx ·σ 2σy | a ≥ x ∈ C(Lσ) & b ≥ y ∈ C(Lσ)} ≤∨{2σ(x ·σ y) | a ≥ x ∈ C(Lσ) & b ≥ y ∈ C(Lσ)} ≤
2σ

∨{x ·σ y | a ≥ x ∈ C(Lσ) & b ≥ y ∈ C(Lσ)} = 2σ(a · b)
2

Definition 3.10 A substructural normal modal logic L is called canonical if
VL is closed under canonical extensions.

Now we describe a discrete duality for RDMAs explicitly. The complex
algebra of a modal ternary Kripke frame F = 〈W,≤, R,R2, R3,O〉 is the com-
plex algebra of the underlying residuated frame F+ with the modal operators
defined as [R2]A = {u ∈ W | ∀w (uR2w ⇒ w ∈ A)} and 〈R3〉 = {u ∈
W | ∃w (uR3w & w ∈ A)}. Here A is an upwardly closed subset. These op-
erations are well-defined. The dual modal ternary frame of a perfect RDMA
M = 〈M,

∨
,
∧
,2,3, ·, \, /, ε〉 is the dual frame M+ of an underlying perfect

distributive residuated lattice with binary relations on completely join irre-
ducible elements. We define these relations as aR2b ⇔ 2κ(a) ≤ κ(b) and
aR3b⇔ a ≤ 3b 2 .

Theorem 3.11

(i) Let F be a modal ternary Kripke frame, then F ∼= (F+)+.

(ii) Let M be a perfect DRMA, then M∼= (M+)+.

Theorem 3.12 Let L be a canonical substructural distributive modal logic,
then L is Kripke complete (and LK as well).
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In this extended abstract we compute some rather involved frame conditions w.r.t.
Generalised Veltman Semantics for principles of interpretability logic. All proofs have
been formalised in Agda and we briefly comment on this formalisation.
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1 Preliminaries

Interpretability logics aim to capture the provably structural behavior of for-
malised interpretability in the same sense as provability logics do for formalised
provability. While any reasonable theory has the same provability logic this is
not the case for interpretability, and reasonable finitely axiomatised theories
have a different interpretability logic than theories with full induction. A major
open problem in the field is to characterise the core logic, denoted IL(All), that
generates the modal logical principles that hold in any reasonable theory.

This paper studies generalised frame conditions for two recently published
([2]) series of principles in IL(All). We work with Generalised Veltman seman-
tics (GVS) as introduced by Verbrugge in [8] and defined below, since they allow
for a more uniform treatment than regular Veltman semantics (see [6]). For
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example, for various interpretability logics we have completeness with respect
to generalised 4 but not with respect to regular Veltman semantics.

Formulas F of interpretability logic are defined by F := Var | ⊥ | F → F |
2F | F�F where Var is a countable set of propositional variables. Our reading
convention stipulates the following binding from strong to weak: {¬,2}, {∧,∨},
�,→. The 2 modality models formal provability with some base theory T and
A � B will stand for “T together with (the interpretation of) A interprets T
together (the interpretation of) B”. We refer the interested reader to e.g. [3].
We now give the definition of GVS which is similar to regular semantics but now
using sets of worlds to model the binary �-modality rather than just worlds.
In this sense, GVS is reminiscent to neighbourhood semantics.

Definition 1.1 A generalised Veltman frame is a triple F = 〈W,R, S〉 where
the set of worlds W is nonempty, R ⊆ W 2 and S ⊆ W ×W × (P(W ) \ {∅}).
We write wRu instead of 〈w, u〉 ∈ R and uSwY instead of 〈w, u, Y 〉 ∈ S. The
structure must satisfy the following conditions :

(i) R is transitive and conversely well-founded;
(ii) if uSwY then wRu and for all y ∈ Y we have wRy;
(iii) if wRu then uSw{u}; and if wRu and uRv then uSw{v};
(iv) if uSwY and ySwZy for all y ∈ Y , then uSw

(⋃
y∈Y Zy

)
.

Frames extend to models by endowing them with a valuation on the set of
propositional variables Var.

Definition 1.2 A generalised Veltman model is a pair M = 〈F, V 〉 with a
generalised Veltman frame F and a valuation V ⊆W ×Var. Given a model M ,
we define a forcing relation ⊆ W × Fm for all formulas extending provabilty
forcing.

Thus, ¬(w  ⊥); w  A → B iff w  B or ¬(w  A); w  2A iff
∀u(wRu⇒ u  A). Finally, we stipulate

w  A � B iff: if wRu and u  A then there exists Y such that Y  B
and uSwY . When we write Y  B we mean that for all y ∈ Y we have
y  B.

If F is a generalised Veltman frame and A a formula, we write F  A to
denote that for every valuation we have 〈F, V 〉  A. For a given interpretability
principle (a scheme of formulas) X we will denote by (X)gen a first or higher
order formula so that for a frame F we have F  X for all instances of X iff F
as a first or higher order structure validates (X)gen.

2 Frame conditions

The principle R : A�B → ¬(A�¬C)�B∧2C was proven to be in IL(All) in
[1] and [2] extends this to two new series: the so-called narrow and broad

4 Most notably the logic ILR as defined below is complete w.r.t. GVS. However, completenes
w.r.t. regular semantics is still open and seems hard. Since ILR is the base case of the two
series that we consider in this paper, we suspect that GVS is more likely to be useful for said
series.
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series. Apart from being in IL(All), not much more is currently known about
the series and this paper constitutes some first progress.

2.1 The narrow series

This series has a more complex frame condition and we only comment on the
first new principle in it, R1: A � B → (¬(A � ¬C) ∧ (D � 3E)) � (B ∧
2C ∧ (D � E)). To state the frame condition we define for E a set that
R−1[E] := {x : ∃y ∈ E.xRy}, and R−1

x [E] := R−1[E] ∩R[x].
The (R1)gen condition reads as follows:

∀w, x, u,B,C,E
(
wRxRuSwB,C ∈ C(x, u)

⇒ (∃B′ ⊆ B)
(
xSwB′, R[B′] ⊆ C, (∀v ∈ B′)(∀c ∈ C)

(vRcSxR
−1
x [E]⇒ (∃E′ ⊆ E)cSvE′)

))
.

Theorem 2.1 F � (R1)gen ⇐⇒ F  R1.

Proof.
⇐ We will only include one direction leaving the other as an exer-

cise. Assume for a contradiction that F 2 (R1)gen. It follows that there exist
w, x, u,B,C,E such that wRxRuSwB, C ∈ C(x, u) and:

(∀B′ ⊆ B)
(
xSwB′, R[B′] ⊆ C
⇒ (∃v ∈ B′)(∃c ∈ C)(∃Z ⊆ R−1

x [E].vRcSxZ,∀E′ ⊆ E.c�SvE′)
)
.

Let V be a family of sets, V := {U : U ⊆ B, xSwU,R[U ] ⊆ C}.
From the condition it follows that for every U ∈ V the following is valid:

(∃vU ∈ U)(∃cU ∈ C)(∃ZU ⊆ R−1
x [E](vURcUSxZU , (∀E′ ⊆ E)cU�SvUE′)).

Let us fix such vU and cU and ZU for all U ∈ V.
Define a valuation such that the following applies: JaK = {u}, JbK = B,

JcK = C, JdK = {cU : U ∈ V}, JeK = E. Note that for any formula A we define
JAK := {w : w  A}.

By assumption we have w  a�b→ (¬(a�¬c)∧(d�3e))�(b∧2c∧(d�e)).
It is easy to see that w  a� b and x  ¬(a� ¬c).
Let us prove x  d�3e. Let xRc  D. Then c = cU for some U ∈ V. From

the definition of cU we have cUSxZU , a forcing is defined such that e is true
exactly on the set E. Hence R−1

x [E]  3e and since ZU ⊆ R−1
x [E] it follows

that x  d�3e.
We can also check that for U ∈ V we have U  b ∧ 2c and the following

condition holds for any set U :

(?) xSwU,U  b ∧2c⇒ U ∈ V.

Since w  a � b and wRx  ¬(a � ¬c) ∧ (d � 3e) there must exist some
set U such that xSwU  b∧2c∧ (d� e). From (?) it follows that that U ∈ V;
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hence there exist vU , cU , ZU such that ZU ⊆ R−1
x [E] and vURcUSxZU , (∀E′ ⊆

E)cU�SvUE′. Since cU  d there must exist some Y such that cUSvUY  e,
however, by the definition of the valuation it follows that Y ⊆ E and thus
cU�SvUY , which is a contradiction. 2

2.2 The broad series

In order to define the Rn principles we first define a series of auxiliary formulas
Uk via U0 := 3¬(D0 �¬C) and Ur+1 := 3((Dr�Dr+1)∧Ur). Next, we define

R0 := A�B → ¬(A� ¬C) �B ∧2C;

Rn+1 := A�B → ((Dn �A) ∧ Un) �B ∧2C.

For n = 1 we have R1 = A� B→ (3¬(D� ¬C) ∧ (D� A)) � (B ∧2C) and the
(R1)gen condition reads as follows 5 :

∀w, x, y, z,A,B,C,D.
wRxRyRz,

(∀u.wRu, u ∈ A⇒ ∃V.uSwV, V ⊆ B),

(∀u.xRu, u ∈ D⇒ ∃V.uSxV, V ⊆ A),

(∀V.zSyV ⇒ ∃v ∈ V.v ∈ C),

z ∈ D
⇒ ∃V ⊆ B(xSwV,R[V ] ⊆ C).

We have generalised the previous condition to work for any n. The proof
is formalised in Agda and can be found in [4,5]. We proceed by stating the
theorem.

Theorem 2.2 F � (Rn)gen ⇐⇒ F  Rn.

3 Agda formalisation

The proofs presented in this paper have been formalised in the Agda ([7]).
Agda is a dependently typed language based on an extension of Per Martin-
Löf’s intuitionistic type theory. Dependent types allow the user to express
mathematical properties with types and prove them by providing a term which
inhabits such type. Its development mostly takes place at the Chalmers Uni-
versity of Technology.

The presented advances in this paper are part of a broader project ([5])
that aims at establishing a modern and state-of-the-art Agda library for inter-
pretability logics, with a focus on generalised Veltman Semantics. To the best
of our knowledge our work is the first attempt at formalising interpretability
logics in Agda or any other proof assistant. By the time of this submission the
library had around 4000 lines of code and includes, but is not limited to, the
following features:

5 We note that the definition of a scheme being frame valid is second order. As such, a
methodological question urges itself (see [5]) in the realm of neighborhood semantics and
generalised Veltman semantics: what constitutes a natural frame-condition?
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• Formalisation of ordinary semantics, generalised semantics and a plethora
of useful lemmas to work on such semantics.

• Due to the many possible quasi-transitivity principles available for gen-
eralised semantics ([4]) we have defined generalised frames to be param-
eterized by such condition. All known quasi-transitivity conditions are
included in the library and all theorems that do not directly depend on
them can be instantiated to work for any quasi-transitivity condition. It
also includes a thorough analysis of the interrelations between the alluded
conditions.

• We have included proofs for a number of frame conditions. Both for or-
dinary and generalised semantics. These include M, P0, R, M0 for both
semantics and Rn, R1 for generalised semantics.

• The library is not limited to semantics and it includes a definition of
the logic IL. It also includes an embedded domain specific language to
write Hilbert style proofs in a paper-like format. We plan on including
derivations of some of the most well known theorems of interpretability
logics.

We humbly believe that our library, although under progress is a display of
the potential and elegance of Agda. In [5] one can find the full details of the
presented theorems in this paper in conjunction with an extensive explanation
of the mentioned library. The code is freely available at

https://gitlab.com/janmasrovira/interpretability-logics.
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Abstract

We develop Kamp-style results for the asynchronous and synchronous variants of
linear temporal logic under team semantics. We define a simple translation from
the asynchronous semantics to first-order logic under team semantics that uses the
flatness of both logics, a property which is lost in some extensions of the logics. We
develop the translation further to accommodate for logics that lack flatness, wherein
we translate to dependence logic with the classical negation. Finally we formulate
the translation from the synchronous semantic to dependence logic with classical
negation.

Keywords: Team semantics, linear temporal logic, hyperproperties.

1 Introduction

Linear temporal logic (LTL) is a simple logic for formalising concepts of time.
It has become important in theoretical computer science, where Amir Pnueli
connected it to system verification in 1977, and within that context the logic
has been studied extensively [6]. With regards to expressive power, a classic
result by Hans Kamp from 1968 shows that LTL is expressively equivalent to
FO2(<) [4,7].

LTL has found applications in the field of formal verification, where it is
used to check whether a system fulfils its specifications. However, the logic
cannot capture all of the interesting specifications a system may have, since it
cannot express dependencies between its executions, known as traces. These
properties, coined hyperproperties by Clarkson and Schneider in 2010, include
properties important for cybersecurity such as noninterference and secure in-
formation flow [2]. Due to this background, extensions of LTL have recently
been the focus of research.

HyperLTL is one of the most extensively studied of these extensions [1]. Its
formulas are interpreted over sets of traces and the syntax extends LTL with
quantification on traces. Among the many results for the logic, there are many
expressivity results, that relate it to fragments of first, and even second order
logic. In particular there is a translation from HyperLTL to FO(<,E), where
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E is an equal level predicate [3]. Here the sets of traces T are coded as T × N
for the domains of the first-order models.

On the other hand, there are alternative approaches to extending LTL to
catch hyperproperties. Team semantics is a framework in which one moves
on from considering truth through single assignments to regarding teams of
assignments as the linchpin for the satisfaction of a formula. Clearly, this
framework, when applied to LTL, provides an approach on the hyperproperties.
Krebs et al in 2018 introduced two semantics for LTL under team semantics:
the synchronous semantics and the asynchronous variant that differ on the
interpretation of the temporal operators [5]. The same paper showed a variety
of complexity and expressivity results for the two semantics, as well as that
the asynchronous semantic has the flatness property, while the synchronous
one does not. This article will follow the semantic definitions of that previous
work.

In this article several translations between fragments of TeamLTL and FO
under team semantics are introduced. Firstly, we define a translation from
the asynchronous semantics to FO3 under team semantics, which relies on the
flatness of both logics. Next we develop this translation further, in order to
accommodate for extensions of asynchronous TeamLTL which lack flatness, and
we translate them to FO3(=(. . . ) ,∼). We further evolve the previous trans-
lation to apply to the synchronous semantics, which in turn we translate to
FO4(=(. . . ) ,∼).

Preliminaries

Definition 1.1 [Traces] Let Φ be a set of atomic propositions. A trace π over Φ
is an infinite sequence π ∈ (2Φ)ω. We denote a trace as π = (π(i))∞i=0, and given
j ≥ 0 we denote the suffix of π starting at the jth element π[j,∞) := (π(i))∞i=j .

Definition 1.2 [Linear Temporal Logic] Formulas of LTL are defined by the
grammar

ϕ := p | ¬p | ϕ ∧ ϕ | ϕ ∨ ϕ | Xϕ | Fϕ | Gϕ | ϕUϕ | ϕRϕ,
where p ∈ Φ.

Definition 1.3 [Classical Semantics for LTL] Given a trace π, proposition p ∈
Φ, and LTL formulas ϕ and ψ, the semantics of linear temporal logic are as
follows.

π |= p⇔ p ∈ π(0)

π |= ¬p⇔ p /∈ π(0)

π |= ϕ ∧ ψ ⇔ π |= ϕ and π |= ψ

π |= ϕ ∨ ψ ⇔ π |= ϕ or π |= ψ

π |= Xϕ⇔ π[1,∞) |= ϕ

π |= Fϕ⇔ ∃k ≥ 0 : π[k,∞) |= ϕ

π |= Gϕ⇔ ∀k ≥ 0 : π[k,∞) |= ϕ

π |= ϕUψ ⇔ ∃k ≥ 0 : π[k,∞) |= ψ and

∀k′ < k : π[k′,∞) |= ϕ

π |= ϕRψ ⇔ ∀k ≥ 0 : π[k,∞) |= ψ or

∃k′ < k : π[k′,∞) |= ϕ

A team of TeamLTL is a set of traces. We denote T [i,∞) := {t[i,∞) | t ∈
T}. The upcoming definitions are following Krebs et al [5].
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Definition 1.4 [Team Semantics for LTL] Suppose T is a team, p ∈ Φ is
a proposition, and ϕ and ψ are TeamLTL formulae. Then the semantics of
TeamLTL are defined by the following.

T |= p⇔ p ∈ π(0) for all π ∈ T
T |= ¬p⇔ p /∈ π(0) for all π ∈ T
T |= ϕ ∧ ψ ⇔ T |= ϕ and T |= ψ

T |= ϕ ∨ ψ ⇔ ∃T1, T2 ⊆ T :

T1 ∪ T2 = T and

T1 |= ϕ and T2 |= ψ

T |= Xϕ⇔ T [1,∞) |= ϕ

T |= F sϕ⇔ ∃k ≥ 0 :

T [k,∞) |= ϕ

T |= F aϕ⇔ ∀π ∈ T ∃kπ ≥ 0 :

{π[kπ,∞) | π ∈ T} |= ϕ

T |= Gsϕ⇔ ∀k ≥ 0 : T [k,∞) |= ϕ

T |= Gaϕ⇔ ∀π ∈ T and

∀kπ ≥ 0 {π[kπ,∞) | π ∈ T} |= ϕ

T |= ϕUsψ ⇔ ∃k ≥ 0 : T [k,∞) |= ψ

and ∀k′ < k : T [k′,∞) |= ϕ

T |= ϕUaψ ⇔ ∀π ∈ T ∃kπ ≥ 0 :

{π[kπ,∞) | π ∈ T} |= ψ and

∀k′π < kπ : {π[k′π,∞) | π ∈ T} |= ϕ

T |= ϕRsψ ⇔ ∀k ≥ 0 :

T [k,∞) |= ψ or ∃k′ < k :

T [k′,∞) |= ϕ

T |= ϕRaψ ⇔ ∀π ∈ T ∀kπ ≥ 0 :

{π[kπ,∞) | π ∈ T} |= ψ or

∃k′π < kπ : {π[k′π,∞) | π ∈ T} |= ϕ

We denote the asynchronous and the synchronous fragments by TeamLTLa

and TeamLTLs, respectively.

Definition 1.5 [FO under team semantics and FO(=(. . .) ,∼)] Formulae of FO
are defined by the grammar

ϕ := x = y | R(x1, . . . , xn) | ¬x = y | ¬R(x1, . . . , xk) | ϕ∧ϕ | ϕ∨ϕ | ∃xϕ | ∀xϕ,
where x, y and x1, . . . , xn are variables, and R is a relation symbol of arity
n. Formulas of FO(=(. . . ) ,∼) extend the grammar by the dependence atom
=(x1, . . . , xn, y) and the Boolean negation ∼ ϕ.

In the following we use the notation T [F/x] = {t[F (t)/x] | t ∈ T}, where T
is a team, F : T → P(M) \ ∅ is a supplementation function and x is a variable.
Similarly we notate duplication through T [M/x] = {t[m/x] | for all m ∈M, t ∈
T}.
Definition 1.6 [Team Semantics for FO] Suppose M is a first-order model
with domain M , and let S be a team of M. Suppose n ≥ 1, and ϕ and ψ are
FO formulae. Then the team semantics of FO are defined by the following.

M |=S x = y ⇔ ∀s ∈ S, s(x) = s(y)

M |=S R(x1, . . . , xn)⇔ ∀s ∈ S,
(s(x1), . . . , s(xn)) ∈ RM
M |=S ¬x = y ⇔ ∀s ∈ S, s(x) 6= s(y)

M |=S ¬R(x1, . . . , xn)⇔ ∀s ∈ S,
(s(x1), . . . , s(xn)) /∈ RM

M |=S ϕ ∧ ψ ⇔M |=S ϕ and

M |=S ψ

M |=S ϕ ∨ ψ ⇔ ∃S1, S2 ⊆ S
such that S1 ∪ S2 = S and

M |=S1
ϕ and M |=S2

ψ

M |=S ∃xϕ⇔ ∃F : S → P(M) \ ∅
such that M |=S[F/x] ϕ

M |=S ∀xϕ⇔M |=S[M/x] ϕ
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The semantics of FO(=(. . .) ,∼) extend the previous with the following.

M |=S =(x1, . . . , xn, y)⇔ ∀s1, s2 ∈ S, if s1(xi) = s2(xi) for all i ∈ {1, . . . , n},
then s1(y) = s2(y)

M |=S∼ ϕ⇔M 2S ϕ

We say that FO under team semantics has the flatness property, since for
all formulae ϕ of FO, models M and teams T it holds that M |=T ϕ if and
only if M |={t} ϕ for all t ∈ T . Similarly for all formulae ϕ of TeamLTL and
teams T , T |= ϕ if and only if {π} |= ϕ for all π ∈ T .

A Translation of Asynchronous LTL to FO

Suppose T = {πj | j ∈ J} is a team of traces. Define MT to be the following
structure of vocabulary {≤} ∪ {Pi | pi ∈ Φ} where

Dom(MT ) = T × N
≤MT = {((πi, n), (πj ,m)) | i = j and n ≤ m}
PMT
i = {(πk, j) | pi ∈ πk(j)}.

In addition we define a team ST = {si | si(x) = (πi, 0), for all πi ∈ T}. We
notate ϕ ↪→ ψ := ¬ϕ ∨ (ϕ ∧ ψ).

Next we define inductively the translations STw, where w ∈ {x, y, z}, from
TeamLTLa to FO3 under team semantics as follows:

STx(pi) = Pi(x)

STx(¬pi) = ¬Pi(x)

STx(ϕ ∧ ψ) = STx(ϕ) ∧ STx(ψ)

STx(ϕ ∨ ψ) = STx(ϕ) ∨ STx(ψ)

STx(Xϕ) = ∃y(x < y ∧ STy(ϕ)∧
∀z¬(x < z ∧ z < y))

STx(Gaϕ) = ∀y(x ≤ y ↪→ STy(ϕ))

STx(F aϕ) = ∃y(x ≤ y ∧ STy(ϕ))

STx(ϕUaψ) = ∃y(x ≤ y ∧ STy(ψ)∧
∀z((x ≤ z ∧ z < y) ↪→ STz(ϕ)))

STx(ϕRaψ) = ∀y(x ≤ y ↪→ (STy(ψ)∨
∃z(x ≤ z ∧ z < y ∧ STz(ϕ)))).

Proposition 1.7 For all TeamLTLa formulae ϕ, T |= ϕ⇔MT |=ST
STx(ϕ).

This proposition follows from the fact that both logics are flat, and in fact,
by the same argument, any translation from LTL to FO is also a translation for
the asynchronous semantic.

Translations in the Absence of Flatness

The previous translation makes use of the fact that both TeamLTLa and FO
have the flatness property. However, flatness does not hold for TeamLTLs or
extensions of TeamLTLa. Thus the translation needs to be modified to accom-
modate for these cases. To that end let MT and ST be as previously. We
define a translation of TeamLTLa formulas to FO3(=(. . .) ,∼) as follows:

The translation is analogous to the previous translation for the atomic
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propositions, ∧, ∨, and X.

ST ∗x (F aϕ) = ∃y(x ≤ y∧
=(x, y) ∧ ST ∗y (ϕ))

ST ∗x (Gaϕ) =∼ ∃y(x ≤ y∧
=(x, y)∧ ∼ ST ∗y (ϕ))

ST ∗x (ϕUaψ) = ∃y(x ≤ y ∧=(x, y) ∧ ST ∗y (ψ)∧
∼ ∃z(x ≤ z ∧ z ≤ y ∧=(x, z)∧ ∼ ST ∗z (ϕ)))

ST ∗x (ϕRaψ) =∼ ∃y(x ≤ y ∧=(x, y)∧
∼ ST ∗y (ψ) ∧ ∃z(x ≤ z ∧ z < y ∧=(x, z)∧
∼ ST ∗z (ϕ))).

Theorem 1.8 For all TeamLTLa formulae ϕ there exists a FO3(=(. . .) ,∼) for-
mula ST ∗x (ϕ), such that T |= ϕ⇔MT |=ST

ST ∗x (ϕ).

This result can now easily be expanded to extensions of TeamLTLa which
do not have the flatness property, by providing a translation for the extending
atoms or operators. For instance, the dependence atom satisfies the equivalence
=(p, q) ≡ (p ∧ (q > ¬q) ∨ (¬p ∧ (q > ¬q), which uses the Boolean disjunction
> that can be expressed in FO(=(. . .) ,∼). Thus by using this equivalence we
can translate any formula of TeamLTLa(=(. . .)) to FO3(=(. . .) ,∼) using the
previous translation.

Corollary 1.9 For all TeamLTLa(=(. . .)) formulae ϕ, T |= ϕ ⇔ MT |=ST

ST ∗x (ϕ).

Translation for Synchronous TeamLTL

The synchronous team semantics for LTL does not have the flatness property
[5]. Armed with the previous translation, we need to capture the equal level
teams on the first-order side. This can be done as for HyperLTL, by introducing
an equal level predicate E [3].

Let MT and ST be as above, with the addition of the equal level predi-
cate E together with its negation, both defined in the usual way by EMT =
{((πi, k), (πj , k)) | i, j ∈ J and k ∈ N}. Next we define a translation from
TeamLTLs to FO4(=(. . .) ,∼) as follows: The translation is analogous to the
previous translations for the atomic propositions, ∧, ∨, and X.

ST ∗x (F sϕ) = ∃y(=(y) ∧ ∃z(E(y, z) ∧ x ≤ z ∧ ST ∗z (ϕ)))

The remaining operators are translated in a similar way to the future operator,
while using the pattern established in the previous translations.

Theorem 1.10 For all TeamLTLs formulae ϕ there exists a FO4(=(. . .) ,∼)
formula ST ∗x (ϕ), such that T |= ϕ⇔MT |=ST

ST ∗x (ϕ).

The translations presented in this article fill in parts of the web of expression
of TeamLTL. In future research the translations can be used to further study
the expressivity and complexity of TeamLTL and its extensions, for instance
the precise fragments of the first-order logics that correspond to the temporal
team logics remains to be determined. The connections between the fragments
of FO under team semantics and HyperFO implied by the similarity of the two
constructions also provide questions for further research.
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Abstract

This paper establishes the subformula property and the Craig interpolation theorem
for sequent calculi of the tense expansions of modal logics K, KT, KD, K4, K4D,
and S4. Our sequent calculi are based on the ordinary notion of (non-labelled)
sequent. We prove the subformula property of all the calculi by Takano’s semantic
argument and apply Maehara method to get the Craig interpolation theorem.

Keywords: Analytic Cut, Craig Interpolation, Subformula Property, Sequent
Calculus, Tense Logic

1 Introduction and Motivation

If we focus on the modal cube, i.e., the fifteen distinct modal logics generated
from modal axioms D, T, B, 4 and 5, all the modal logics have the corre-
sponding sequent calculi and the calculi enjoy the subformula property [5,7],
though we need to extend the notion of subformula for modal logics K5 and
K5D [6]. While it is well-known that some sequent calculi for the fifteen modal
logics (say, for S5) do not enjoy the cut-elimination theorem, Takano proposed
that the subformula property can be regarded as a substitute of cut-elimination
for modal logics. A key ingredient of this claim is that all applications of the
cut rule can be replaced with analytic applications of the cut rule, i.e., appli-
cations where the cut formula is a subformula in a formula of the conclusion
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of the cut rule. Recently, Kowalski and Ono [1] extended this perspective to
bi-intuitionistic logic to get the Craig interpolation theorem.

This paper extends Takano’s claim also to tense expansions of modal logics.
In particular, we provide sequent calculi of the tense expansions of modal logics
K, KT, KD, K4, K4D and S4, and then establish (semantically) that all the
calculi enjoy the subformula property (with the help of an analytic cut rule).
As a corollary of the subformula property, we establish the Craig interpolation
theorem by Maehara method via the ordinary notion of sequent. This contrasts
with the recent result [2, Corollary 16] of the Craig interpolation theorem for
tense logics in terms of the notion of nested (or labelled) sequent.

2 Sequent Calculi for Tense Logics

Let Prop be a countable set of propositional variables. Our syntax L for tense
logic consists of Prop and all logical connectives of classical logic, i.e., a constant
symbol ⊥, negation ¬, disjunction ∨, conjunction ∧, implication →, as well as
two modal operators {�,2 }, where 2 is the future necessity operator and
� is the past possibility operator. The set of all formulas in L is defined
in a standard way. Given any formula ϕ, we define Sub(ϕ) as the set of all
subformulas of ϕ. Moreover, for any set (or multiset) Γ of formulas, we define
Sub(Γ) =

⋃
ϕ∈Γ Sub(ϕ). We say that a set (or multiset) Γ is subformula closed

if Sub(ϕ) ⊆ Γ for all formulas ϕ ∈ Γ.
Given a Kripke frame (W,R) (where W is a non-empty set and R is a binary

relation on W ), we follow the standard definitions for frame properties of R
such as reflexivity, transitivity, and seriality. A Kripke model M = (W,R, V )
consists of a Kripke frame (W,R) and a valuation V : Prop → ℘(W ). Given
a model M = (W,R, V ) and a state w ∈ W , a satisfaction relation M,w |= ϕ
(read “ϕ is true at w of M”) is defined inductively as usual, in particular,

M,w |= 2ϕ iff for every v, wRv implies M, v |= ϕ,
M,w |= �ϕ iff for some v, vRw and M, v |= ϕ.

We say that a formula ϕ is valid on a class M of Kripke models if, for every
Kripke model M in M, M,w |= ϕ holds for all states w in M .

Table 1
Sequent Rules for Tense Operators

�Θ,Π⇒ ϕ

Θ,2Π⇒ 2ϕ
(2)

ϕ⇒ Σ,2Θ

�ϕ⇒ �Σ,Θ
(�)

�Θ,Π⇒
Θ,2Π⇒ (2D)

ϕ,Γ⇒ ∆

2ϕ,Γ⇒ ∆
(2⇒)

Γ⇒ ∆, ϕ

Γ⇒ ∆,�ϕ
(⇒ �)

�Ω,�Θ,2Π,Π⇒ ϕ

�Ω,Θ,2Π⇒ 2ϕ
(24)

ϕ⇒ Σ,�Σ,2Θ,2Ω

�ϕ⇒ �Σ,Θ,2Ω
(�4)

�Ω,�Θ,2Π,Π⇒
�Ω,Θ,2Π⇒ (24D)

�Θ,2Π⇒ ϕ

�Θ,2Π⇒ 2ϕ
(⇒ 2)

ϕ⇒ �Σ,2Θ

�ϕ⇒ �Σ,2Θ
(�⇒)

In what follows, we use Γ, ∆, etc. to denote finite multisets of formulas. A
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sequent is a pair of finite multisets and it is denoted by Γ ⇒ ∆, where Γ and
∆ are called an antecedent and a succedent, respectively. We read Γ ⇒ ∆ as
“if all formulas in Γ hold, then some formulas in ∆ holds”. Let LK be a set
of initial sequents (ϕ ⇒ ϕ and ⊥ ⇒), structural rules (right and left rules for
contraction and weakening), propositional rules (right and left rules for ¬, ∧,
∨, and →) and the rule of cut:

Γ⇒ ∆, ϕ ϕ,Π⇒ Σ

Γ,Π⇒ ∆,Σ
(Cut)

.

Definition 2.1 Let Λ ∈ {K,KD,KT,K4,K4D,S4 }. A sequent calculus
G(Λt) is defined in terms of rules given in Table 1 as follows:

• G(Kt) consists of LK, (2) and (�). (cf. [3])

• G(KDt) is the expansion of G(Kt) with (2D).

• G(KTt) is the expansion of G(Kt) with (2⇒) and (⇒ �).

• G(K4t) consists of LK, (24) and (�4). (cf. [3])

• G(K4Dt) is the expansion of G(K4t) with (24D).

• G(S4t) consists of LK, (⇒ 2), (2⇒), (⇒ �) and (�⇒).

For each sequent calculi in Definition 2.1, we define the notions of proof and
provable sequent as usual. The reader may wonder if (Cut) is admissible in all
the calculi in Definition 2.1. However, this is not the case. Let us focus on
G(Kt) here. A sequent p,�2¬p⇒ is provable in the calculus with the help of
(Cut), but the application of (Cut) is indispensable for the purpose:

2¬p⇒ 2¬p
�2¬p⇒ ¬p (�) p⇒ p

¬p, p⇒ (¬ ⇒)

p,�2¬p⇒ (Cut)
,

where (¬⇒) is the left rule for negation (this kind of phenomena is well-known
for a sequent calculus of modal logic S5, see, e.g., [4, p.222]). It is remarked
in the above proof that the cut formula ¬p is a subformula of the conclusion
of (Cut) and moreover 2¬p is also a subformula of the conclusion of the rule
(�). Therefore, all the applications of the inference rules in the proof above are
analytic, i.e., they satisfy the subformula property. This motivates us to define
the following analytic variants to the calculi of Definition 2.1.

Definition 2.2 When Λ ∈ {K,KD,KT,K4,K4D,S4 }, Ga(Λt) is the same
system as G(Λt) except we replace (Cut) by the following analytic cut rule:

Γ⇒ ∆, ϕ ϕ,Π⇒ Σ

Γ,Π⇒ ∆,Σ
(Cut)a where ϕ ∈ Sub(Γ,Π,∆,Σ)

,

and we also replace tense logical rules with analytic variants (with superscript
“a”) requiring the following side conditions:
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• (2)a: �Θ ⊆ Sub(Π, ϕ).

• (�)a: 2Θ ⊆ Sub(ϕ,Σ).

• (2D)a: �Θ ⊆ Sub(Π).

• (24)a: �Θ ⊆ Sub(�Ω,Π, ϕ).

• (�4)a: 2Θ ⊆ Sub(ϕ,Σ,2Ω).

• (24D)a: �Θ ⊆ Sub(�Ω,Π).

A sequent Γ ⇒ ∆ is valid in a Kripke model M if
∧

Γ → ∨
∆ is valid in

M , where
∧

Γ and
∨

∆ are the conjunction and disjunction of all formulas in
Γ and ∆, respectively. Given any Λ ∈ {K,KD,KT,K4,K4D,S4 }, the class
Mfin

Λ is the class of all finite Kripke models whose binary relation R satisfies
the corresponding frame properties to Λ.

Proposition 2.3 (Soundness) Let Λ ∈ {K,KD,KT,K4,K4D,S4 }. If a
sequent Γ⇒ ∆ is provable in G(Λt), then it is valid on all models in Mfin

Λ .

3 Subformula Property

Let Λ ∈ {K,KD,KT,K4,K4D,S4 }. This section establishes that a fully an-
alytic calculus Ga(Λt) enjoys the subformula property by showing that Ga(Λt)
is semantically complete for the intended class of finite models. In what follows
in this section, we fix Ξ as a subformula closed finite set.

Definition 3.1 We say that a pair (Π,Σ) of finite sets of formulas is a Ξ-
partial valuation in Ga(Λt) if the following three conditions are satisfied: (i)
Π⇒ Σ is unprovable in Ga(Λt), (ii) Π ∪ Σ = Sub(Π,Σ), (iii) Sub(Π,Σ) ⊆ Ξ.

We use the analytic cut rule (Cut)a to get the following lemma.

Lemma 3.2 Let Γ ⇒ ∆ be unprovable in Ga(Λt). For any subformula closed
set Ξ such that Sub(Γ,∆) ⊆ Ξ, there exists a Ξ-partial valuation (Γ+,∆+) in
Ga(Λt) such that Γ ⊆ Γ+ ⊆ Sub(Γ,∆) and ∆ ⊆ ∆+ ⊆ Sub(Γ,∆).

Definition 3.3 Define MΞ
Λ = (WΞ, RΞ

Λ, V
Ξ) by:

• WΞ := { (Π,Σ) | (Π,Σ) is a Ξ-partial valuation in Ga(Λt) }.
• RΞ

Λ is defined depending on our choice of Λ as follows:
· (Γ,∆)RΞ

Λ(Π,Σ) iff {ψ |2ψ ∈ Γ } ⊆ Π and {ψ |�ψ ∈ Σ } ⊆ ∆,
if Λ ∈ {K,KT,KD };

· (Γ,∆)RΞ
Λ(Π,Σ) iff {ψ,2ψ |2ψ ∈ Γ } ⊆ Π and {ψ,�ψ |�ψ ∈ Σ } ⊆ ∆,

if Λ ∈ {K4,K4D };
· (Γ,∆)RΞ

S4(Π,Σ) iff {2ψ |2ψ ∈ Γ } ⊆ Π and {�ψ |�ψ ∈ Σ } ⊆ ∆.

• (Γ,∆) ∈ V Ξ(p) iff p ∈ Γ.

Lemma 3.4 For every (Γ,∆) ∈WΞ and every χ ∈ Γ ∪∆, the following hold:
(i) χ ∈ Γ implies MΞ

Λ , (Γ,∆) |= χ, and (ii) χ ∈ ∆ implies MΞ
Λ , (Γ,∆) 6|= χ.

Lemma 3.5 For every choice of Λ, the Kripke model MΞ
Λ belongs to MΛ.

Theorem 3.6 Let Λ ∈ {K,KD,KT,K4,K4D,S4 }. If a sequent Γ ⇒ ∆ is
valid in the class Mfin

Λ , then it is provable in Ga(Λt).

Definition 3.7 For any Λ ∈ {K,KD,KT,K4,K4D,S4 }, we define G∗(Λt)
as the same system as G(Λt) except that the cut rule (Cut) is replaced by the
analytic variant (Cut)a (recall Definition 2.2).
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We establish the Craig interpolation theorem for G∗(Λt) in the next section,
though it is noted that Ga(S4t) and G∗(S4t) are exactly the same calculi.

Corollary 3.8 For any sequent Γ ⇒ ∆, the following are all equivalent: (1)
Γ⇒ ∆ is valid in the class Mfin

Λ , (2) Γ⇒ ∆ is provable in Ga(Λt), (3) Γ⇒ ∆
is provable in G∗(Λt), (4) Γ⇒ ∆ is provable in G(Λt).

Proof. The direction from (1) to (2) is due to Theorem 3.6 and the direction
from (4) to (1) is due to Proposition 2.3. The remaining directions (from (2)
to (3) and from (3) to (4)) are immediate by definition. 2

4 Craig Interpolation Theorem for Tense Logics

This section establishes the Craig interpolation theorem of G(Λt) for all choices
of Λ ∈ {K,KD,KT,K4,K4D,S4 } by Maehara’s method. For this purpose,
it suffices to make use of G∗(Λt) from Definition 3.7, instead of the fully analytic
calculus Ga(Λt). Given any finite multiset ∆, we use Prop(∆) to mean the set
of all propositional variables in a formula of ∆. A pair 〈(Γ1,∆1), (Γ2,∆2)〉 is
said to be a partition of a sequent Γ ⇒ ∆ if Γ = Γ1,Γ2 and ∆ = ∆1,∆2 and
we write it as (Γ1 : ∆1), (Γ2 : ∆2).

Lemma 4.1 If a sequent Γ ⇒ ∆ is provable in G∗(Λt), then every partition
(Γ1 : ∆1), (Γ2 : ∆2) of Γ ⇒ ∆ has an interpolant, i.e., there exists a formula
θ such that sequents Γ1 ⇒ ∆1, θ and θ,Γ2 ⇒ ∆2 are provable in G∗(Λt), and
Prop(θ) ⊆ Prop(Γ1,∆1) ∩ Prop(Γ2,∆2).

Proof. By induction on a proof of Γ ⇒ ∆ in G∗(Λt). When the last applied
rule is (Cut)a, we can apply the same argument as given in [4, pp.245-246]. 2

By Corollary 3.8 and Lemma 4.1, the following holds (cf. [2, Corollary 16]).

Theorem 4.2 Let Λ ∈ {K,KD,KT,K4,K4D,S4 }. If a sequent ⇒ ϕ → ψ
is provable in G(Λt) then there exists a formula θ such that both sequents ⇒
ϕ→ θ and ⇒ θ → ψ are provable in G(Λt), and Prop(θ) ⊆ Prop(ϕ)∩ Prop(ψ).
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Pod Vodárenskou věž́ı 271/2, Prague, The Czech Republic

Abstract

We formulate a weak completeness argument for Propositional Dynamic Logic that
does not rely on the presence of Boolean negation in the language and does not involve
a construction of a finite model. As a result, the argument is applicable to a wide
range of propositional dynamic logics extending bounded distributive lattice logic,
including superintuitionistic and relevant dynamic logics.

Keywords: Completeness, superintuitionistic modal logic, propositional dynamic
logic, relevant modal logic, substructural logics.

1 Introduction

It is well-known that, due to non-compactness caused by features of the Kleene
star operator on programs, the standard canonical model technique is not ap-
plicable in weak completeness proofs for Propositional Dynamic Logic. Instead,
known weak completeness proofs [5,3,8,2,1] proceed using a filtration-like con-
struction of a finite counter-model model for each non-theorem. The proof that
such a structure invalidates the non-theorem at hand is relying on the fact that
sets of states in the model can be characterized by formulas; the proof of this
fact usually relies on the presence of Boolean negation. Hence, the standard
weak completeness argument unsuitable for generalizations of PDL to logics
without Boolean negation or the finite model property. Examples include in-
tuitionistic, paraconsistent or relevant propositional dynamic logics.

In this paper we formulate a generalization of the standard weak complete-
ness argument that avoids these limitations. We show that a version of the
modal part of the Segerberg axiomatization of classical PDL is robust in the
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abstract and the AiML 2020 PC chairs for their patience in the process of revision. I am
grateful to Marta B́ılková, Vı́t Punčochář and Andrew Tedder for fruitful discussions on the
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sense that it axiomatizes the PDL program constructs on roughly their ex-
pected semantic interpretation independently of the non-modal propositional
base, if that base is at least as strong as bounded distributive lattice logic. We
supplement the general completeness argument with case studies, including in-
tuitionistic and relevant PDL. The application of our main result to relevant
PDL apparently yields the first completeness results for PDL based on >⊥-
expansions of some prominent strong relevant logics lacking the finite model
property, thus being a step towards solving an open problem pointed out by
Sylvan in the early 1990s; see [9]. The results presented here substantially
generalize our previous work on the topic [6,7].

2 Preliminaries

Let Fma be a countable set of atomic formulas and L be any propositional
language, comprising a set of operators OpL together with an arity function
r : OpL → ω; we usually write on to point out that r(o) = n for o ∈ OpL.
It is assumed that L contains at least the binary operators ∧,∨,→, the unary
operator ¬, and constants >,⊥. Let Pra be a countable set of atomic program
expressions. Programs and formulas of L are defined as follows:

• PrL P ::= pi | P0;P1 | P0 ∪ P1 | P ∗ | A?;

• FmL A ::= ai | on(A0, . . . , An−1) | [P ]A;

where pi ∈ Pra and ai ∈ Fma. Formulas and programs are jointly referred to
as expressions of L, the set of which is denoted as ExL. We write PQ instead
of P ;Q and A↔ B instead of (A→ B) ∧ (B → A).

A propositional dynamic logic over L is any subset of FmL that contains
all instances of the axioms (officially, we take “axioms” of the form A↔ B to
represent pairs of axioms A→ B,B → A)

A1 A → A

A2 A ∧B → A

A3 A ∧B → B

A4 A → A ∨B

A5 B → A ∨B

A6 A ∧ (B ∨ C) → (A ∧B) ∨ C

A7 A → >

A8 ⊥ → A

A9 [P ]A ∧ [P ]B → [P ](A ∧B)

A10 > → [P ]>
A11 [P ∪Q]A ↔ ([P ]A ∧ [Q]A)

A12 [P ;Q]A ↔ [P ][Q]A

A13 [P ∗]A → A ∧ [P ][P ∗]A

A14 [A?]B ↔ (¬A ∨B)

and is closed under the rules

R1
A → B B → C

A → C

R2
A → B A → C

A → B ∧ C

R3
A → C B → C

A ∨B → C

R4
A → B

[P ]A → [P ]B

R5
A → [P ]A ∧B

A → [P ∗]B

Definition 2.1 An abstract dynamic model for L is M = (K,≤, O,Σ, I) such
that K 6= ∅, ≤ is a partial order on K, O ⊆ K such that x ∈ O and x ≤ y only
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if y ∈ O, Σ is an arbitrary set of relations and I : ExL → K × K such that
(Id(X) = {(x, x) | x ∈ X})

(i) I(A) ⊆ Id(K) for all A ∈ FmL

(ii) (x, x) ∈ I(A) and x ≤ y only if (y, y) ∈ I(A);

(iii) I(>) = Id(K) and I(⊥) = ∅;
(iv) I(A ∧B) = I(A) ∩ I(B) and I(A ∨B) = I(A) ∪ I(B);

(v) I([P ]A) =
{

(x, x) | ∀y((x, y) ∈ I(P ) =⇒ (y, y) ∈ I(A))
}

;

(vi) (x, y) ∈ I(pi) and z ≤ x only if (z, y) ∈ I(pi);

(vii) I(P ∪Q) = I(P ) ∪ I(Q);

(viii) I(PQ) = I(P ) ◦ I(Q);

(ix) I(P ∗) =
(
≤ ∪ I(P )

)∗
=
⋃
n∈ω(≤ ∪ I(P ))n;

(x) I(A?) = {(x, y) | x ≤ y & (y, y) 6∈ I(¬A)}.
We write x �M A if (x, x) ∈ I(A) in M and xPy if (x, y) ∈ I(P ). Formula A
is valid in model M iff Id(O) ⊆ I(A).

Note that items (iii–iv) are compatible with the “hereditarity condition” (ii)
and items (vi–x) ensure that (v) is compatible with (ii) as well. The relations
in Σ (the “signature” of M) are typically used to specify the interpretation of
propositional connectives other than >,⊥,∧ and ∨, including → and ¬. The
precise way how this is done will not matter to us; we do not assume any
specific properties of →,¬ other than hereditarity (ii).

Definition 2.2 An abstract dynamic model for L satisfies the implication
property if (i) I(A) ⊆ I(B) and (ii) Id(O) ⊆ I(A → B) are equivalent for
all A,B ∈ FmL.

Lemma 2.3 If M for L satisfies the implication property, then all L-formulas
of the form A1–14 are valid in M and the set of L-formulas valid in M is closed
under R1–5.

3 The main observation

Our main observation is that, for each A 6∈ L, a structure obtained by combining
the canonical model construction and the filtration of the canonical model
invalidates A, if the structure satisfies a “readiness” condition that pertains to
the behaviour of non-modal formulas. This observation can be used to obtain
weak completeness proofs for a wide range of PDLs based on extensions of
distributive lattice logic.

Definition 3.1 Let α be a set of L-formulas. The closure of α is the smallest
set α′ ⊇ α that is closed under subformulas and (i) >,⊥ ∈ α′; (ii) if [P ]A ∈ α′,
then [P ]> ∈ α′; (iii) if [P ;Q]A ∈ α′, then [P ][Q]A ∈ α′; (iv) if [P ∪Q]A ∈ α′,
then [P ]A ∈ α′ and [Q]A ∈ α′; (v) if [P ∗]A ∈ α′, then [P ][P ∗]A ∈ α′; (vi) if
[A?]B ∈ α′, then ¬A ∈ α′. A set α is closed iff α is the closure of α.
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Let Φ be an arbitrary set of formulas. A formula A occurs in Φ if A ∈ Φ; a
program P occurs in Φ if there is [P ]A that occurs in Φ.

Definition 3.2 Let Φ be a finite closed set. A canonical L-model for Φ is any
abstract dynamic model MΦ

L = (K,≤, O,Σ, I) where

(i) K is the set of all prime L-theories and ≤ is set inclusion;

(ii) O = {α | L ⊆ α};
(iii) I(a) = {(α, α) | a ∈ α} for a ∈ Fma ∩ Φ and I(a) = ∅ for a ∈ Fma \ Φ;

(iv) I(p) = {(α, β) | ∀[p]A ∈ Φ([p]A ∈ α =⇒ A ∈ β)} for p that occurs in Φ
and I(p) = ∅ if p does not occur in Φ.

Let C(MΦ
L ) = {A ∈ FmL | ∀α ∈ MΦ

L (α � A ⇐⇒ A ∈ α)}. We write C
instead of C(MΦ

L ) if the parameter is clear from the context. Note that >,⊥ ∈ C
and A∧B,A∨B ∈ C for all A∧B,A∨B ∈ Φ such that A,B ∈ C by definition of
prime theory. Our main observation is that, in fact, Φ ⊆ C, if the propositional
part of Φ “behaves as it should”, in the sense of the following definition.

Definition 3.3 MΦ
L is ready iff

(i) Fma ∩ Φ ⊆ C; and

(ii) if B = on(A0, . . . , An−1) ∈ Φ and Ai ∈ C for all i < n, then B ∈ C.
For any X ⊆ K, we define

• FX :=
∨{∧

(α∩Φ) | α ∈ X
}

, where
∧ ∅ := >,

∨ ∅ := ⊥, and Fα := F{α};

• and, for any P ∈ PrL, let [P ]X := {α | ∀β((α, β) ∈ I(P ) =⇒ β ∈ X)}.
The following key theorem is a generalizes a result in [4].

Theorem 3.4 Take any ready MΦ
L for any propositional dynamic logic L and

any finite closed Φ. The following hold for all E ∈ ExL occurring in Φ:

(i) If E ∈ FmL, then α � E iff E ∈ α, for all α ∈ K;

(ii) If E ∈ PrL, then [E]A ∈ α and αEβ only if A ∈ β for all [E]A ∈ Φ;

(iii) If E ∈ PrL, then X ⊆ [E]Y only if `L FX → [E]FY , for all X,Y ⊆ K.

The proof is by induction on the complexity of E; the complexity measure
uses an elaboration of the “subexpression” relation. We omit the details.

It follows from Theorem 3.4 that if A 6∈ L and M is a ready canonical
L-model for some finite closed set Φ containing A, then A is not valid in M.

Theorem 3.5 For all p.d.l. L and all classes M of abstract dynamic models, if
A 6∈ L implies that there is a ready canonical L-model for some finite closed set
Φ containing A and this canonical L-model is in M, then L is weakly complete
with respect to M.

The presence of ⊥,> is convenient and, so it seems, also necessary for our
proof of Theorem 3.4 to go through. In particular, ⊥,> facilitate a general
definition of FX applicable to all X ⊆ K (note that α ∩ Φ 6= ∅ for all α ∈ K
and FX is defined even if X = ∅), and they avoid the problematic case {B |
[p]B ∈ α ∩ Φ} = ∅ in the proof of the base case of claim (iii) of Theorem 3.4.
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4 Special cases

In order to show that a given propositional dynamic logic L is sound and weakly
complete with respect to some class of abstract dynamic models M using The-
orem 3.5, it is sufficient to show that L is sound with respect to M and that
for all A 6∈ L there is a ready MΦ

L for A ∈ Φ such that MΦ
L ∈ M. Readiness

and MΦ
L ∈ M can usually be established using well-known facts about prime

L0-theories, where L0 is the non-modal fragment of L; soundness follows from
Lemma 2.3 and properties of non-modal prime theories. Specific L to which
this sort of argument applies include classical PDL, a version of intuitionistic
PDL, a wide range of canonical superintuitionistic PDLs, and canonical rele-
vant PDLs extending the basic relevant logic B, including PDLs based on the
prominent relevant logics T, R and E; these logics are known to lack the fi-
nite model property [10] (in fact, they are undecidable). The latter result is
a step towards the solution of a problem left open by Sylvan [9]; the reason
for reservation here is that we are using constants >,⊥ which are problematic
from the relevantist standpoint (one reason is that they violate the variable
sharing property; another reason is that some relevantists argue that there is
no proposition that is true, or one that is false, in all states). Hence, a natural
open problem is to replicate our argument without using > and ⊥.
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Abstract

We consider products and semiproducts of propositional modal logics Λ with S5
and present new examples of product and semiproduct logics axiomatized in the
‘minimal’ way and enjoying the product (or semiproduct) FMP. An essential part of
the proof is local tabularity of these (semi)products for Λ of finite depth; it is obtained
by using bisimulation games. These results readily imply decidability for 1-variable
fragments of predicate modal logics QΛ and QΛ+Barcan formula. We also present
new counterexamples, i.e. (semi)products not axiomatizable in the simplest way.

Keywords: modal logic, 1-variable fragment, product of modal logics, bisimulation
game, finite model property

1 Introduction

Semiproducts and products are special types of combined modal logics. Their
systematic investigation began in the 1990s, notably due to connections with
other areas of logic, both pure and applied, cf. [2]. Nowadays the field has
become even more interesting and intriguing; for an overview of some devel-
opments cf. [6]. In this note we are especially interested in (semi)products
with S5, due to their interpretation in modal predicate logic translating the
S5-necessity into the universal quantifier.

One of the starting points in the study of products was the “product-
matching” theorem ([2], Theorem 5.9) — the product of two Kripke complete
Horn axiomatizable logics is axiomatized in the minimal way. A similar re-
sult for semiproducts (“semiproduct-matching”) is known for particular cases
only (ibid., Theorem 9.10). Here we present some new positive examples —
Horn axiomatizable logics that are semiproduct-matching with S5 and have
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the product finite model property (FMP). This implies decidability and the
FMP for corresponding 1-variable modal predicate logics.

We also present new counterexamples — two infinite families of logics not
semiproduct-matching with S5. In particular, we show that Horn axiomatiz-
able complete logics may not be semiproduct-matching.

2 Preliminaries

We consider normal monomodal predicate logics, as defined in [4], in a sig-
nature with predicate letters only. A logic is a set of formulas contain-
ing standard first-order axioms and the axiom of K and closed under stan-
dard rules (including predicate substitution). The minimal predicate exten-
sion of a propositional monomodal logic Λ is denoted by QΛ; QΛC denotes
QΛ + ∀x�P (x)→ �∀xP (x) (the Barcan axiom).

Formulas constructed from a single variable x and monadic predicate letters
are called 1-variable. Formulas in which every subformula of the form �B
contains at most one parameter are called monodic [2].

Lemma 2.1 Every monadic monodic formula with at most one parameter is
equivalent to a 1-variable formula in QK.

In turn, every monomodal 1-variable formula A translates into a bimodal
propositional formula A∗ with modalities � and �, if every atom Pi(x) is
replaced with a proposition letter pi and every quantifier ∀x with �. The
1-variable fragment of a predicate logic L is the set

L−1 := {A∗ | A ∈ L, A is 1-variable}.

For a modal predicate logic L, we have the following:

Lemma 2.2 L−1 is a bimodal propositional logic containing K |S5.

Definition 2.3 The product of frames F1 = (U1, R1), F2 = (U2, R2) is
F1 × F2 := (U1 × U2, Rh, Rv), where

Rh(u, v) = R1(u)× {v}, Rv(u, v) = {u} ×R2(v).

A semiproduct of F1 and F2 is a subframe (F1 × F2)|W where Rh(W ) ⊆W .

Consider a monomodal propositional logic Λ (in the language with �) and
S5 (in the language with �). Put

Λ |S5 := Λ ∗ S5 +��p→ ��p, [Λ,S5] := Λ |S5 +��p→ ��p,

where ∗ denotes fusion.

Definition 2.4 The product Λ× S5 is the logic of the class of all products of
Λ-frames with S5-frames. Similarly, the semiproduct ΛiS5 is the logic of the
class of all semiproducts of such frames.

In both cases, instead of arbitary S5-frames one can use single clusters.
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Definition 2.5 The Kripke-completion L of a modal predicate logic L is the
logic of the class of all predicate Kripke frames validating L.

Lemma 2.6 (i) Λ |S5 ⊆ QΛ−1 ⊆ QΛ−1 = Λi S5.

(ii) [Λ,S5] ⊆ QΛC−1 ⊆ QΛC−1 = Λ× S5.

Definition 2.7 Λ and S5 are called semiproduct-matching if Λ |S5 = ΛiS5
and product-matching if [Λ,S5] = Λ× S5.

Λ is called quantifier-friendly, if QΛ−1 = Λ |S5, and Barcan-friendly, if
QΛC−1 = Λ× S5.

So Λ is quantifier-friendly (respectively, Barcan-friendly) whenever Λ and
S5 are semiproduct-matching (respectively, product-matching).

Theorem 2.8 (cf. [2], Theorem 5.9). If Λ is Kripke complete and Horn
axiomatizable, then Λ and S5 are product-matching.

For semiproducts an analogue of this theorem does not hold (see below).
Let us recall, in a slightly more general form, a number of positive results
presented in [2], Theorem 9.10. 1

Definition 2.9 A one-way PTC-logic is a modal propositional logic axioma-
tized by formulas of the form �p→ �np and variable-free formulas.

Theorem 2.10 Λ and S5 are semiproduct-matching for any one-way PTC-
logic Λ.

3 Counterexamples

Theorem 3.1 (cf. [9]) Let

�T := K +�(�p→ p), SL4 := K4 + 3p↔�p.

If �T ⊆ Λ ⊆ SL4, then Λ and S5 are not semiproduct-matching.

For the proof note that ��(�p→ p) ∈ (Λi S5)− (Λ |S5).

Hence we obtain counterexamples to an analogue of Theorem 2.8: Horn
axiomatizable logics �T, K5, K45 are not semiproduct-matching with S5.

Nevertheless, we have

Remark 3.2 (cf. [8]) Every complete Horn axiomatizable logic is quantifier-
friendly.

Theorem 3.3 If K +Altn ⊆ Λ ⊆ K +Altn +�m⊥ for n ≥ 3, m ≥ 2, then Λ
and S5 are neither product- nor semiproduct-matching.

Proof. (Sketch.) Take the product F1×F2, where F1 is the irreflexive tree with
the root 0 and the leaves 1, . . . , n and F2 is the two-element cluster {1, 2}; re-
place Rv by the least equivalence relation S2 such (x, y)S2(x′, y′) for x = x′ = 0
or x = x′ > 3, (1, 1)S2(2, 2), (1, 1)S2(3, 2), (1, 2)S2(2, 1), (1, 2)S2(3, 1). The

1 In [2] semiproducts are called ‘expanding relativized products’, Λ |S5 is denoted by
[Λ,S5]EX , Λ i S5 by (Λ× S5)EX .
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resulting frame Gn is not a p-morphic image of a semiproduct of a (K +Altn)-
frame and a cluster while Gn � [K+Altn+�2⊥,S5]. Therefore its Fine-Jankov
formula belongs to (Λi S5)− [Λ,S5].

A standard canonical model argument proves Kripke-completeness of all
the logics QΛ for Λ = K +Altn, K +Altn +�m⊥. So we obtain

Corollary 3.4 The logics K+Altn, K+Altn+�m⊥ are not quantifier-friendly
for n ≥ 3, m ≥ 2.

4 Local tabularity

Recall that a propositional logic L is locally tabular, if for any finite k there
exist finitely many L-non-equivalent formulas in k proposition letters.

It is well known that every extension of a locally tabular modal logic in the
same language is locally tabular; every locally tabular logic has the FMP.

Theorem 4.1 Every logic (K +�n⊥) |S5 is locally tabular.

This theorem is proved by using bisimulation games; the corresponding
technique is described in [7].

A monomodal logic Λ is of finite depth if �n⊥ ∈ Λ for some n.

Corollary 4.2 If Λ is of finite depth, then the logics ΛiS5, Λ |S5 have the
FMP; so their finite axiomatizability implies decidability.

In particular, ΛiS5 (Λ×S5) is decidable, provided Λ, S5 are semiproduct-
(product-) matching and Λ is of finite depth.

5 More examples of semiproduct-matching

In contrast with Theorem 3.3, we can identify some other logics that are
semiproduct-matching with S5.

Lemma 5.1 Consider the axiom Ath := 33p → �3p. Ath-frames are de-
fined by the following first-order condition:

∀x, y, z, u (xRy ∧ xRz ∧ yRu→ zRu).

We call these frames thick.

Proposition 5.2 The logics K + Ath, K + Ath + �n⊥ for n ≥ 1 are
semiproduct-matching with S5.

Proof. (Sketch.) Every countable rooted K |S5-frame H is a p-morphic im-
age of a semiproduct G of a tree F and a cluster C; the proof is similar to
the one for products, cf. [2]. Since Ath is a Horn formula, we can take the
corresponding Horn closure G+; then G+ is a semiproduct of F+ and C. If
H � Ath, we obtain a p-morphism from G+ onto H. So every formula refutable
on H is not in (K +Ath)i S5.

Adding variable-free axioms �n⊥ does not affect this argument.
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6 Product and semiproduct FMP

In many cases (semi)products enjoy the (semi)product FMP. In particular, if
L1 is tabular and L2 has the FMP, then L1×L2 has the product FMP [3, Cor.
5.9]. Probably, this may not be true, if L1 is only locally tabular. Examples of
semiproduct FMP can be found in [5], but they do not cover our next result:

Theorem 6.1 For Λ = K +Ath and Λ = K +�n⊥+Ath, the (semi)product
of Λ with S5 has the (semi)product FMP.

Corollary 6.2 For logics Λ from Theorem 6.1 QΛ − 1 has the FMP, i.e., is
complete w.r.t. finite Kripke frames with finite domains.

Let us give some comments about the proof of Theorem 6.1 for the case
of semiproducts. Note that (K + Ath) i S5 =

⋂
n((K + �n⊥ + Ath) i S5),

so it suffices to consider only L = Λ i S5 for Λ = K + �n⊥ + Ath and show
that every finite rooted L-frame F = (W,R1, R2) is a p-morphic image of a
finite semiproduct of a Λ-frame with a cluster. A row in F is a connected
component in (W,R1); a column is an equivalence class under R2; a block is a
non-empty intersection of a row and a column. F is straight if all its blocks
are singletons. We can show that F is a p-morphic image of a straight rooted
L-frame isomorphic to a semiproduct of a Λ-frame and a cluster.

Remark 6.3 We hope our main results can be transferred to extensions of GL.
The logic GL |S5 is the well-known provability logic of Artemov–Japaridze,
which is semiproduct-matching with S5. A transitive analogue of Ath is R.
Solovay’s axiom AS := �(�p → �q) ∨ �(�q → p ∧ �p). We may conjecture
that SOL := GL+AS (Solovay’s logic of “provability w.r.t ZF” cf. [1], ch. 13)
is also semiproduct-matching with S5 and that SOLiS5 has the semiproduct
FMP.
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Abstract

Obligations for an agent may depend on its knowledge. In order to formalize
knowledge-based obligations, we present the logic KCDL (Knowledge-based Condi-
tional Deontic Logic) based on Hansson’s style of conditional obligations, incorporat-
ing epistemic information. KCDL is based on a new dyadic operator, called epistemic
conditional obligation. The complete axiomatization of the logic is given as well.

1 Introduction

Obligations of agents can be affected by their knowledge. For example, a doctor
should not be blamed for not treating a man when she does not know to be ill,
although the doctor bears an objective obligation to treat patients. This paper
focuses on knowledge-based obligation [5] and describes it with a new dyadic
obligation operator from a view of conditional obligations. The dyadic operator
©(φ|ψ) is read as: it ought to be φ given the condition that ψ [8]. Hansson
proposed a new dyadic obligation operator over preference-based models [3],
where the semantics of ©(φ|ψ) is: on the best ψ-states, φ is satisfied.

In this paper, we intend to formalize those conditional obligations that the
agent already knows, but the knowledge of the antecedents decides whether the
conditional obligations are ‘triggered’. As the above example shows, the doctor
knows that she is obliged to treat the man under the condition that he is ill,
but she does not know whether the man is ill. We will follow Hansson’s method
to define a new dyadic deontic operator

⊙
(φ|ψ), called epistemic conditional

obligations based on epistemic betterness structures where epistemic relations
are introduced.

2 Language and Epistemic Betterness Structures

2.1 The Language for KCDL

Definition 2.1 (Language LKCDL) Let P be a set of propositional variables.
The language LKCDL is given by the following BNF:

φ ::= p | ¬φ | (φ ∧ φ) | Kφ |⊙(φ|φ)

Kφ represents knowledge.
⊙

(φ|ψ) represents the epistemic conditional
obligation, which can be read as: the agent knows that over all the cases
considered possible, it ought to be φ given the condition that ψ.
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2.2 Semantics of KCDL
For the semantics we need epistemic betterness structures.

Definition 2.2 (Epistemic Betterness Structures) M = 〈S,∼,6, V 〉 is an epis-
temic betterness structure where S is the set of states, ∼: S×S is an epistemic
relation (equivalence relation), 6: S × S is a partial order, called betterness
relation and V : P→ P(S) is the valuation over S. Let [s]∼ be the set of states
accessible from s by the epistemic relation ∼. Let ‖φ‖M be the set of all the
states satisfying φ in M . s > t if t 6 s and s 66 t.

Accordingly, maximality and truth conditions can be defined as follows:

Definition 2.3 Given an arbitrary epistemic betterness structure M = 〈S,∼
,6, V 〉: r ∈ max6 ‖φ‖M ⇔ r ∈ ‖φ‖M and ∀t ∈ ‖φ‖M (r 6 t ⇒ t 6 r),
r ∈ max6|[s]∼ ‖φ‖M ⇔ r ∈ ‖φ‖M ∩ [s]∼ and ∀t ∈ ‖φ‖M ∩ [s]∼(r 6 t⇒ t 6 r).
The truth condition of

⊙
(φ|ψ) can be defined over M as: M, s |= ⊙

(φ|ψ) ⇔
max6|[s]∼ ‖ψ‖M ⊆ ‖φ‖M .

Intuitively, no other element is strictly better than any maximal element of
a partially ordered set S. The truth condition of

⊙
(φ|ψ) means over all the

states that are indistinguishable from s, the best ψ-states also satisfy φ.
To make the semantics work, we need to assume that 6 should be∼-smooth,

which is inspired by the notion of smoothness in Parent’s work [6].

Definition 2.4 (∼-Smoothness) An epistemic betterness structure M is
∼-smooth if for every state s in M , for every t ∈ [s]∼, if M, t |= φ, either
t ∈ max6|[s]∼ ‖φ‖M or ∃v ∈ [s]∼ : v > t and v ∈ max6|[s]∼ ‖φ‖M .

2.3 Epistemic Factual Detachment

In the tradition of Hansson’s framework, factual detachment can be formalized
as ©(φ|ψ) ∧ 2ψ → ©(φ|>) (see [7]), which describes the detachment of the
antecedent in the conditional obligation due to its necessity.

In our framework, we can formalize an epistemic version of factual detach-
ment based on epistemic conditional obligations as: (

⊙
(φ|ψ)∧Kψ)→⊙

(φ|>)
(EFD). (EFD) is valid over epistemic betterness structures. It is in line with
our intuitions: knowing the antecedent triggers the conditional obligation, mak-
ing the consequence unconditionally obligatory.

3 Logic of Knowledge-based Conditional Obligation

3.1 Axiom System for KCDL
TAUT (PL)

S5-schema for K (S5)⊙
(ψ → γ|φ)→ (

⊙
(ψ|φ)→⊙

(γ|φ)) (
⊙

K)⊙
(ψ|φ)→ K

⊙
(ψ|φ) (

⊙
Abs)

Kφ→⊙
(φ|ψ) (

⊙
Nec)

K(φ↔ ψ)→ (
⊙

(γ|φ)↔⊙
(γ|ψ)) (

⊙
Ext)⊙

(φ|φ) (
⊙

Id)⊙
(γ|φ ∧ ψ)→⊙

(ψ → γ|φ) (
⊙

Sh)
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¬K¬φ→ (
⊙

(ψ|φ)→ ¬⊙(¬ψ|φ)) (
⊙

D?)
(
⊙

(ψ|φ) ∧⊙
(γ|φ))→⊙

(γ|φ ∧ ψ) (
⊙

CM)
If ` φ and ` φ→ ψ, then ` ψ (MP)

If ` φ, then ` Kφ (KN)

KCDL is the same as the system F+(CM) in Parent’s paper [6] following
Åqvist’s approach [1]. But F+(CM) is investigated over reflexive and smooth
betterness structures (or reflexive, total 1 , transitive and smooth structures).

Theorem 3.1 (Soundness) KCDL is sound with respect to the class of epis-
temic betterness structures where 6 is reflexive, transitive and ∼-smooth.

We omit proofs since they are almost the same as Parent’s proof.

Lemma 3.2 The following formulas are derivable in KCDL:

(i)
⊙

(ψ1|φ) ∧⊙
(ψ2|φ) ∧ · · ·⊙(ψn|φ)→⊙

(ψ1 ∧ ψ2 · · · ∧ ψn|φ) (n > 2)

(ii) If ` ψ → γ, then `⊙
(ψ|φ)→⊙

(γ|φ).

(iii)
⊙

(φ|φ ∨ ψ) ∧⊙
(ψ|ψ ∨ γ)→⊙

(γ → ψ|φ)

(iv) ¬K¬φ→ ¬⊙(⊥|φ)

(v)
⊙

(γ|φ ∨ γ) ∧⊙
(ψ|φ)→⊙

(φ→ ψ|γ)

(vi) (
⊙

(φ|φ ∨ ψ) ∧⊙
(ψ|ψ ∨ γ))→⊙

(φ|φ ∨ γ)

(i) - (v) are proved in [6]. The derivability of (vi) refers to [4].

3.2 Strong Completeness of KCDL
The basic strategy of proving completeness is also attributed to Parent’s work.
We give a new definition on 6 in the canonical models which keeps 6 transitive.
Let Γ be a consistent set of LKCDL-formulas. We need to establish a canonical
model which satisfies Γ. Let Γ0 be some maximal consistent extension of Γ.
Γψ0 denotes {φ | ⊙(φ|ψ) ∈ Γ0} and K−1∆ denotes {φ | Kφ ∈ ∆}. We
will distinguish two cases: (1) Principal case: there is a formula ω such that
Γω0 ⊆ Γ0; (2) Limiting case: there is no formula ω such that Γω0 ⊆ Γ0.

3.2.1 Principal Case

Definition 3.3 (The Canonical Model Generated by Γ0, Principal Case) A
canonical model generated by Γ0 is a tuple MΓ0 = 〈W,∼,6, V 〉 where

(i) W = {(∆, ψ) | ∆ is a MCS and Γψ0 ⊆ ∆} 2 ;

(ii) (∆, ψ) ∼ (Σ, χ) iff K−1∆ ⊆ Σ;

(iii) (∆, ψ) 6 (Σ, χ) iff (
⊙

(χ|χ ∨ ψ) ∈ Γ0 and ψ 6∈ Σ) or (∆ = Σ and ψ = χ).

(iv) V (p) = {(∆, ψ) | p ∈ ∆} for any p ∈ P.

Lemma 3.4 (1) ∼ is an equivalence relation and total; (2) Let ∆ be a MCS.
If

⊙
(φ|φ ∨ ψ) 6∈ ∆, then ∆φ∨ψ ∪ {¬φ} is consistent; (3) Let ∆ and ∆1 be two

MCSs. If
⊙

(φ|ψ) 6∈ ∆1 and K−1∆ ⊆ ∆1, then ∆ψ ∪ {¬φ} is consistent.

1 An order 6 is total over a set S iff for any t1, t2 ∈ S, t1 6 t2 or t2 6 t1.
2 MCS represents the maximal LKCDL-consistent set.
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Now we can prove the Truth Lemma based on MΓ0 .

Lemma 3.5 (Truth Lemma) Let MΓ0 = 〈W,∼,6, V 〉 be a canonical model
generated by Γ0. For all (∆, ψ) ∈W and all φ, MΓ0 , (∆, ψ) |= φ iff φ ∈ ∆.

Proof. We prove it by induction on the structure of φ. When φ is a Boolean
formula, the proof is standard. When φ = Kβ, it is almost the same as [6].

When φ =
⊙

(α|β):

• (⇒) Suppose that
⊙

(α|β) 6∈ ∆. By Lemma 3.4(3), Γβ0 ∪ {¬α} is consistent.

So Γβ0 ∪{¬α} can be extended into a MCS ∆1. Since Γβ0 ⊆ ∆1, (∆1, β) ∈W .
Let (∆2, γ) be an arbitrary state in W such that β ∈ ∆2. By Definition 3.3,
(∆2, γ) 6> (∆1, β). By Lemma 3.4(1), (∆1, β) ∼ (∆, ψ). Thus, (∆1, β) ∈
max6|[(∆,ψ)]∼ ‖β‖MΓ0 . By the inductive hypothesis, MΓ0 , (∆1, β) |= ¬α. So
MΓ0 , (∆, ψ) 6|= ⊙

(α|β).

• (⇐) Suppose that
⊙

(α|β) ∈ ∆. Let (∆1, θ) ∈ max6|[(∆,ψ)]∼ ‖β‖MΓ0 . We
want to show that

⊙
(θ|β ∨ θ) ∈ Γ0. Assume, to reach a contradiction, that⊙

(θ|β ∨ θ) 6∈ Γ0. By Lemma 3.4(2), Γβ∨θ0 ∪ {¬θ} is consistent. So it can be

extended into a MCS ∆2 such that Γβ∨θ0 ∪ {¬θ} ⊆ ∆2. So (∆2, β ∨ θ) ∈W .
By the axiom (

⊙
Id), β ∨ θ ∈ ∆2. So β ∈ ∆2. By (

⊙
Id) again, we have⊙

(β ∨ θ|β ∨ θ ∨ θ) ∈ Γ0. Since θ 6∈ ∆2, (∆1, θ) 6 (∆2, β ∨ θ). And we know⊙
(θ|β ∨ θ ∨ θ) 6∈ Γ0. So (∆2, β ∨ θ) 66 (∆1, θ). Thus, (∆1, θ) < (∆2, β ∨

θ). By Lemma 3.4(1), (∆1, θ) ∼ (∆2, β ∨ θ). By the inductive hypothesis,
MΓ0 , (∆2, β ∨ θ) |= β, which contradicts (∆1, θ) ∈ max6|[(∆,ψ)]∼ ‖β‖MΓ0 .

Thus,
⊙

(θ|β ∨ θ) ∈ Γ0. Let γ be an arbitrary formula such that γ ∈ Γβo .
So

⊙
(γ|β) ∈ Γ0. We also have

⊙
(θ|β ∨ θ) ∈ Γ0. Thus, by Lemma 3.2(v),⊙

(β → γ|θ) ∈ Γ0. Thus, β → γ ∈ Γθ0. So β → γ ∈ ∆1. Thus, γ ∈ ∆1. So
α ∈ ∆1 as well. Therefore, MΓ0 , (∆, ψ) |= ⊙

(α|β).
2

Lemma 3.6 (Verification Lemma) MΓ0 is reflexive, transitive and ∼-smooth.

Proof. (Reflexivity and Transitivity) Reflexivity is easily verified by Definition
3.3. Transitivity can be obtained by Lemma 3.2(iii) and Lemma 3.2(vi).

(∼-smoothness) Let (∆, θ) ∈MΓ0 such that MΓ0 , (∆, θ) |= β:

• When
⊙

(θ|θ ∨ β) ∈ Γ0: Assume that (∆, θ) 6∈ max6|[(∆,θ)]∼ ‖β‖MΓ0 . This
means that there exists (Σ, λ) ∈ MΓ0 such that (Σ, λ) > (∆, θ) and Σ ∈
‖β‖MΓ

0
. By Definition 3.3(iii),

⊙
(λ|λ ∨ θ) ∈ Γ0 and θ 6∈ Σ. By Lemma

3.2(v),
⊙

(λ|λ∨ θ)∧⊙(θ|θ∨β)→⊙
(β → θ|λ) ∈ Γ0. So

⊙
(β → θ|λ) ∈ Γ0.

So β → θ ∈ Σ, which implies that θ ∈ Σ. Contradiction.

• When
⊙

(θ|θ∨β) 6∈ Γ0, we will show that there is (Σ, β∨θ) ∈MΓ0 such that
(Σ, β∨θ) > (∆, β) and (Σ, β∨θ) ∈ max6|[(∆,θ)]∼ ‖β‖MΓ0 . Since

⊙
(θ|θ∨β) 6∈

Γ0, by Lemma 3.4(2), Γβ∨θ0 ∪ {¬θ} is consistent. So it can be extended into

a MCS Σ such that Γβ∨θ0 ∪ {¬θ} ⊆ Σ. By Definition 3.3, (Σ, β ∨ θ) ∈ MΓ0 .
Since ¬θ ∈ Σ, we have β ∈ Σ. Since for any (Λ, λ) > (Σ, β∨θ), ¬(β∨θ) ∈ Λ.
So ¬β ∈ Λ. Thus, (Σ, β ∨ θ) ∈ max6|[(∆,θ)]∼ ‖β‖MΓ0 . By the axiom (

⊙
Id),

we have (Σ, β ∨ θ) > (∆, β).
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3.2.2 Limiting Case

Definition 3.7 (The Canonical Model Generated by (Γ0, ω), Limiting Case)
Take an arbitrary formula ω, the canonical model generated by (Γ0, ω) is a
tuple M (Γ0,ω) = 〈W ′,∼′,6′, V ′〉 where ∼′ and V ′ are defined as in Definition
3.3(ii) and (iii), W ′ and 6′ are defined as follows:

(i) W ′ = W ∪ {(Γ0, ω)}, where W = {(∆, ψ) | ∆ is a MCS and Γψ0 ⊆ ∆};
(ii) 6′ = 6 ∪{〈(Γ0, ω), (Γ0, ω)〉} ∪ {〈(Γ0, ω), (∆, ψ)〉 | (∆, ψ) ∈ W}, where 6

is defined as in Definition 3.3(iii).

The truth lemma and verification lemma for Limiting case can be proved
easily based on Lemma 3.5.

Theorem 3.8 KCDL is strongly complete with respect to the class of epistemic
betterness structures that are reflexive, transitive and ∼-smooth.

We observe that it is straightforward to redeploy the above completeness
argument to prove the strong completeness of F+(CM) with respect to the
class of betterness structures that is reflexive, transitive, smooth and where ∼
is universal. Such completeness result was left as an open question in [6] and
is also the focus of a forthcoming publication by Parent [2].

4 Conclusions

We define a new dyadic deontic operator to describe the knowledge-based con-
ditional obligations and provide a sound and strongly complete logic for it with
respect to the reflexive, transitive and ∼-smooth epistemic betterness struc-
tures.
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Abstract

The realization theorem connects modal logic with its explicit counterpart, justifica-
tion logic, or logic of proofs, by relating occurrences of the modal operator in a modal
theorem with suitable proof terms, and turning a modal theorem into a theorem in
justification logic or logic of proofs. In this paper, we propose another proof of the
realization theorem, focusing on the relation between S4 and LP. We will define a
concept called positive expansion on modal formulas, and prove that through the
expansion, every S4 theorem can be turned into a theorem whose realization is a
theorem in LP−, a subsystem of LP without +. Both semantic and syntactic proofs
are given for this result, where the semantic proof also provides a structural analysis
of the semantics of LP−. Then an algorithmic procedure is provided which in a way
reverses the procedure of expansion to convert a +-free realization of the expansion
to a realization of the original S4 theorem in the system of LP.

Keywords: Modal logic, Justification Logic, Realization, Logic of Proofs.

1 Introduction

The realization theorem is a main result in the study of justification logic [2,1,8].
It provides a formal connection between assorted justification logical systems
with their modal epistemic logical counterparts in a formal structural way.
Granted the importance of the realization theorem, various proofs have been
proposed. There is a constructive proof given in [2] concerning the first axiom
system of justification logic, LP, treated as a logic of proofs, and its modal
epistemic counterpart S4. The proof uses cut-free Gentzen style S4 proofs as
a guide to establish the formal connection. The first semantic proof of the
theorem is given in [6], which is also where the possible-world-like semantics
for justification logic is introduced. The method used in the semantic proof
is later extended by the author to suggest a two-stage proof procedure for an
infinite class of justification logics [5]. More proofs of the theorem can be found
in [4,3,7,9].

In this paper, we propose another proof of the realization theorem concern-
ing the relation between S4 and LP. The importance and novelty of the proof
rest on its revelation of the function of + in the procedure of realization. We
will define a concept called positive expansion on modal formulas and prove
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that through the expansion, every S4 theorem can be turned into a theorem
whose realization is a theorem in LP−, the subsystem of LP without +. Then
an algorithmic procedure is provided which in a way reverses the procedure of
expansion to convert a +-free realization of the expansion to a realization of
the initial S4 theorem in the system of LP. More clear statements of the result
have to wait until some formal definitions are given. But roughly, the process
of the expansion is to substitute formulas of the form 2X∨2X for 2X, which
is the modal counterpart of the process of substituting the disjunction s:φ∨ t:φ
for (s+ t):φ. Thus the process of the expansion can be viewed as the process of
removing + without + being explicitly stated, and this is justified by our proof
that every S4 theorem can indeed be expanded to a modal theorem whose real-
ization is +-free. Then adding + back to the realization of the expanded modal
theorem, we can obtain a realization of the original analyzed modal theorem in
the system of LP. For the proof of the realization of a positive expansion of an
S4 theorem into an LP− theorem, we provide both the semantic and syntactic
proofs, where the semantic proof renders a structural analysis of the semantics
of LP−, and the syntactic proof gives us another view of how + functions in
the procedure of realization.

2 Positive Expansion and the Realization Theorem

Some basic knowledge of justification logic and modal logic is assumed. The
languages of S4, LP−, and LP are denoted as LS4, LLP− and LLP, respectively.
Comparing the languages, we can see that a formula in LLP, or LLP− is in a
way the result of filling in the occurrences of 2 of an L2 formula with proof
terms. We give a formal definition based on the observation.

Definition 2.1 Call a formula of the form 2G m-formula. Given a formula F
in L2, O(F ) denotes the set of occurrences of m-formula in F , and O+(F ) and
O−(F ) the sets of positive occurrences and negative occurrences of m-formula
in F respectively. So O(F ) = O+(F ) ∪ O−(F ). 1

Definition 2.2 Given a formula F ∈ L2, a proof term assignment, pt-
assignment, on F assigns a proof term to an occurrence in O(F ).

Definition 2.3 Let F ∈ L2, and R(F ) be the set of pt-assignments of F . Also
let ∗ ∈ {+,−}.

(i) r ∈ R∗n(F ) ⊆ R(F ) if and only if r(O∗(F )) ⊆ V, where V is the set of
propositional variables;

(ii) r ∈ R∗sn(F ) ⊆ R∗n(F ) if and only if the restriction of r to O∗(F ), r|O∗(F ),
is injective. where r|O∗(F ) is the restriction of r to O∗(F ).

A pt-assignment r is positive normalized if r ∈ R+
n (F ), and negative normalized

if r ∈ R−n (F ); then we call a pt-assignment r strictly positive normalized if
r ∈ R+

sn(F ), and strictly negative normalized if r ∈ R−sn(F ).

1 Basically formula occurences and the sets of O(F ), O+(F ) and O−(F ) can be formally
defined. An example of the definition can be found in [9].
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Definition 2.4 Given formulas F,G ∈ L2, by F ≺1 G, we mean G =
F [2X/ 2X∨2X], that is, G is the result of substituting 2X∨2X for an oc-
currence of 2X in F . We write F ≺+

1 G and F ≺−1 G to indicate that the
occurrence of 2X in F is positive and negative respectively. Furthermore, 4,
4+, and 4− are the transitive and reflexive closure of ≺1, ≺+

1 , and ≺−1 , respec-
tively, and we call F 4+ G that G is a positive expansion of F , and F 4− G
negative expansion.

Definition 2.5 Given F≺1
+G (F≺1

−G respectively) with G =
F [2X/ 2X∨2X] for some positive (negative) occurrence 2X in F , and
a function p : O−(F ) 7→ T (p : O+(F ) 7→ T ), we say a pt-assignment r on G is
rooted in p if and only if there is a pt-assignment r′ on F such that r′|O−(F )
(r′|O+(F ) ) is p, and Gr = F r

′
[(2X)r1/(2X)r2 ∨ (2X)r3 ], where all the

restrictions of r1, r2, and r3 to their respective O−(2X) (O+(2X)) are equal
to p|O−(2X) (p|O+(2X) respectively).

Here’s an example. Let P and Q be propositional variables. If F is 2P →
2¬2Q and G is 2P → (2¬2Q ∨ 2¬2Q), then F ≺+

1 G with 2X = 2¬2Q;

and if F r
′

is x:P → t1:¬y:Q, and Gr is x:P → (t2:¬y:Q∨ t3:¬y:Q), then r′ is a
strictly negative normalized pt-assignment on F provided x and y are distinct
variables, and the pt-assignment r on G is rooted in r′|O−(F ). Notice that y
is duplicated in Gr, and t1, t2 and t3 are not necessary to be equal.

Definition 2.6 Given formulas F,G ∈ L2 and G being a positive (nega-
tive) expansion of F , a pt-assignment r on G is rooted in p : O−(F ) 7→ T
(p : O+(F ) 7→ T ) if there is a sequence of formulas F=F0, . . . , Fn=G and a
sequence of pt-assignments r0 ∈ R(F0), . . . , rn ∈ R(Fn) such that r0|O−(F )
(r0|O+(F )) is p, Fi−1 ≺+

1 Fi (Fi−1 ≺−1 Fi), and ri is rooted in ri−1|O−(Fi−1)
(ri−1|O+(Fi−1)), for 1 ≤ i ≤ n.

Assume that the constant specifications are axiomatically appropriate and
term-schematic. Given our notations, the realization theorem is as follows:

Theorem 2.7 F is an S4 theorem if and only if there is a pt-assignment r on
F such that F r is an LP theorem.

There are two directions in the theorem. The one from right to left is
the easy one. We focus on the other, in which a stronger result that r is
strictly positive normalized can be obtained. In this case, F r is called a normal
realization in the literature. Our proof is through the following two theorems:

Theorem 2.8 If F is an S4 theorem, then there is a positive expansion G of
F , and a pt-assignment r on G rooted in an injective p : O−(F ) 7→ V such that
Gr is LP− provable.

Theorem 2.9 Given a positive expansion G of F , and a pt-assignment r on
G rooted in an injective p : O−(F ) 7→ V, there is a substitution σ and a strictly
positive pt-assignment r′ on F such that Grσ → F r

′
is LP provable.

Call a formula F ∈ L2 with a pt-assignment r such that F r is LP− provable
a strong theorem. Then Theorem 2.8 tells us that F is an S4 theorem if and
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only if there is a formula G with F 4+ G, such that G is a strong theorem;
and furthermore, among all the pt-assignments r on G such that Gr is LP−

provable, we can pick out an r′ which is rooted in an injective p : O−(F ) 7→ V
such that Gr

′
is an LP− theorem. Then according to Theorem 2.9, there is a

substitution σ, and a strictly negative normalized pt-assignment r′′ of F such
that Grσ → F r

′′
is LP provable. Since we are working on an LP(CS) axiom

system with CS term schematic, Grσ is LP provable, and so is F r
′′
. This gives

us the realization theorem.

3 Constructive Method

Now we analyze the first proof of the realization theorem given in [2] to provide
constructive proof of Theorem 2.8. We call a Gentzen style S4 proof strong if
every family in the proof contains at most one essential occurrence. Note that
following the original realization procedure in [2], the conclusion of a strong
proof is realized to a plus-free normal realization. Suppose that a Gentzen style
proof is not strong. We can pick out an essential family of the proof in which
an occurrence of 2F in the conclusion of a rule is related to two occurrences of
2F in the premise(s) with each of them belonging to an essential family of the
subproof tree(s) of the premise(s). There could be one or two subproof trees,
depending on that it is a contraction rule or a two-premise rule. We call the
essential family on the left, family 0, and on the right, family 1. Then turn the
whole proof into a new one by substituting 2F ∨2F for all the occurrences of
2F in the essential family that we just pick out. In this procedure, certainly
Y ≺+

1 Z, if Z is the resulting formula of the substitution from the formula Y .
It can then be easily checked that every application of the rules is still an

application of the same rule, except the applications of the right modal rule in
which 2F is introduced. Then we have such an instance in the proof tree:

2Γ⇒ F
2Γ⇒ 2F ∨2F

,

which is then replaced by the following:

2Γ⇒ F
R2

2Γ⇒ 2F R∨i
2Γ⇒ 2F ∨2F

,

where i=0 or 1 depending on that 2F is in family 0 or 1. Continue the process,
we will eventually have a strong proof, and the conclusion is a strong theorem
expanded from the original S4 theorem. Finally, since the proof now is strong,
applying the original algorithm given in [2], we have a realization for the strong
theorem.

4 Comparison

In [5], Fitting, extending from his previous work, proposed a universal method
to deal with the realization problem for an infinite class of logics, including
all the justification logic counterparts of Geach logics. Both Fitting’s method
and the realization procedure adopted here take two stages, with the first at
which an LP− theorem related in some way to an analyzed modal theorem φ
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is produced: in [5], it’s the quasi-realization of φ, and here, the realization of a
positive expansion of φ, and with the second at which an algorithm is provided
to turn the quasi-realization or the realization of the positive expansion to a
realization of φ in LP. In our procedure, the LP− theorem produced at the
first stage is a realization of a modal theorem whose structure compared with
the originally analyzed modal theorem φ is given beforehand: it is a positive
expansion of φ; on the other hand, in Fitting’s method, no such knowledge
is provided; the existence of a quasi-realization of φ is justified by directly
examining all possible combinations of the realizations of subformulas of the
analyzed modal theorem. Technically, such knowledge of the comparative struc-
ture between the underlying modal theorems of the realizations simplifies the
algorithm given at the second stage. Compared with the complication of the
algorithm of turning a quasi-realization into a realization, the one given at the
second stage in our procedure which is guided by the process of the expansion
is relatively simple. Furthermore, only in such an algorithm in which + is used
in a way against the structures of the modal theorems, the function of + is fully
revealed. In a nutshell, + is added to the realization of the positive expansion
of an analyzed modal theorem to group together realizations of formulas which
are duplicated in the process of the expansion. Such a function of + can be
clearly viewed by comparing the original proof of the realization theorem in [2]
and the constructive proof given here, and this investigation of the function of
+ can be generalized to concern the realization of the other justification logic
by the semantic method given in this paper.
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